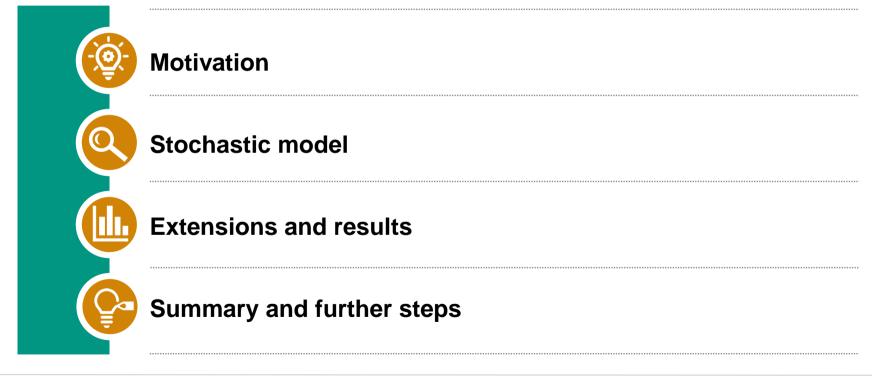
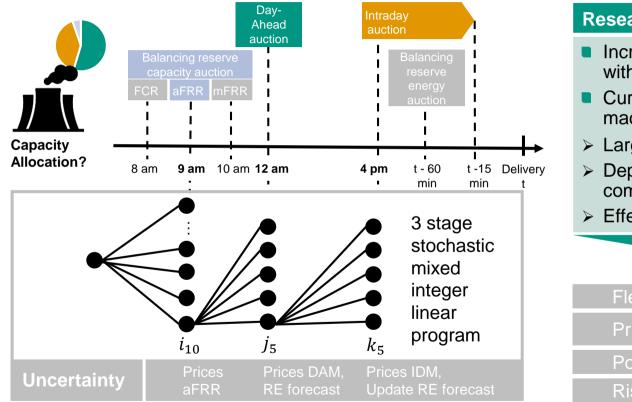


Effects of price-making and portfolio size in stochastic optimization of trading in sequential electricity markets

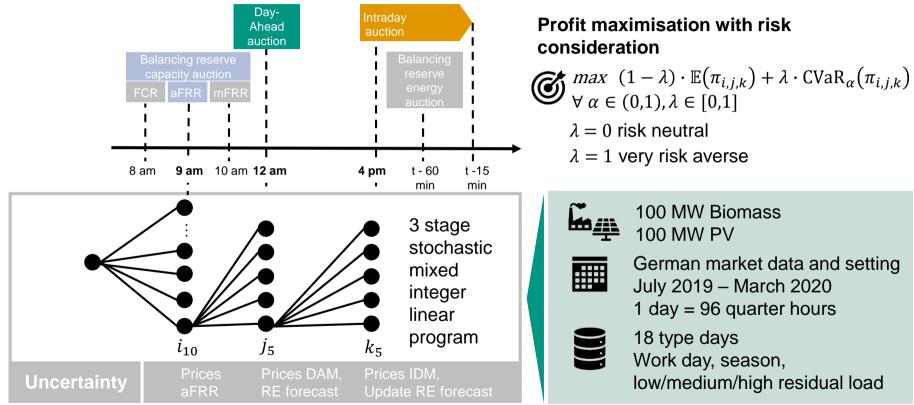

Emil Kraft, Kim K. Miskiw, Stein-Erik Fleten 16.02.2023, IEWT2023, TU WIEN

www.kit.edu


Contents

Motivation

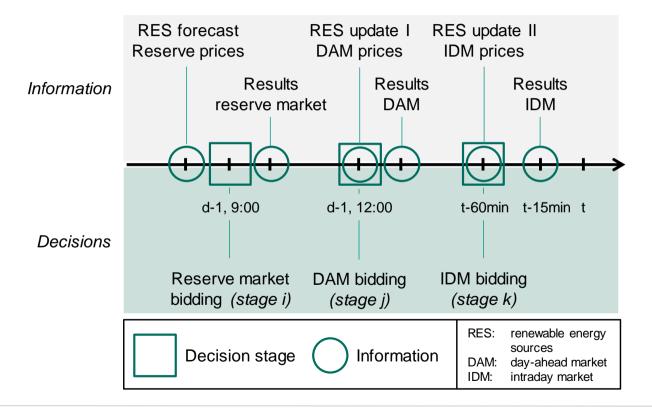
3


Research Gap

- Increasing importance of products with short lead time [1, 2]
- Currently trading decisions often made deterministic [3, 4]
- > Large value of coordination of bids?
- Dependency on portfolio composition?
- > Effect of price making?

Flexibility [3] Price impact [3] Portfolio size [4] Risk aversion [1]

21.02.2023 FCR- Frequency Containment Reserve, aFRR- automatic Frequency Restoration Reserve, mFRR- manual FRR, DAM- Day-ahead market, IDM –Intraday market, RE- Renewable Energies


Stochastic optimization model

Karlsruher Institut für Technologie

Decision structure

Kraft et al. (2022)

Start Point

Multi-stage stochastic model & derived scenarios Kraft et al. (2022)

1. Implement Price Impact	2. Formulate Bidding Heuristic	3. Sensitivity Analysis
$\begin{array}{l} Revenue = \\ \left(\hat{y}_{j,k,qh}^{ID} - b_{qh} * x_{i,j,k,qh}^{ID,trade} \right) * x_{i,j,k,qh}^{ID,trade} \end{array}$		
IDM with limited liquidity		
Continuous trading ≈ one uniform auction with ID3 price		
Impact derived from historical data following [3,6,7]		
Accepted bids from last 3 h		
• Ordered and linear regression fitted $\rightarrow b_{qh} = slope$		
Linearized following [6]		

3. Sensitivity Analysis

Start Point

Multi-stage stochastic model & derived scenarios Kraft et al. (2021)

1. Implement Price Impact

Revenue =

 $\left(\hat{y}_{j,k,qh}^{ID} - b_{qh} * x_{i,j,k,qh}^{ID,trade}\right) * x_{i,j,k,qh}^{ID,trade}$

- IDM chosen ← limited liquidity
- Continuous trading ≈ one uniform auction with ID3 price
- Impact derived from historical data following [3,6,7]
- Accepted bids from last 3 h
- Ordered and linear regression fitted $\rightarrow b_{qh} = slope$
- Linearized following [6]

2. Formulate Bidding Heuristic

Optimizing market stages separately $[3,6,8] \rightarrow$ Myopic bidding heuristic

Stage 1:

Maximise profit aFRR & DAM assuming average realizations of DAM scenarios

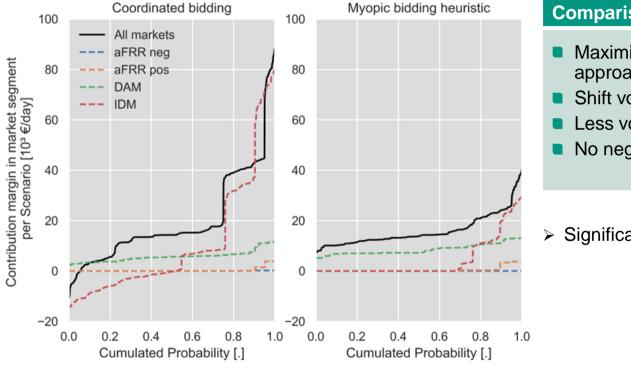
 x_i^{aFRR}

 $x_{i,j,k,qh}^{DA}$

Stage2: Maximize profit DAM

Stage 3:

Maximize profit IDM



8

1. Price Impact

2. Bidding Heuristic

3. Sensitivity Analysis

Comparison

- Maximise immediate revenue greedy approach
- Shift volume to earlier market stages
- Less volume left for Intra-day
- No negative revenue in myopic bidding

Significant difference in head and tail

Start Point

Multi-stage stochastic model & derived scenarios Kraft et al. (2021)

1. Implement Price Impact

Revenue =

$$\left(\hat{y}_{j,k,qh}^{ID} - b_{qh} * x_{i,j,k,qh}^{ID,trade}\right) * x_{i,j,k,qh}^{ID,trade}$$

- ID chosen ← limited liquidity
- Continuous trading ≈ one uniform auction with ID3 price
- Impact derived from historical data following [3,6,7]
- Closed bids from last 3 h
- Ordered and linear regression fitted $\rightarrow b_{qh} = slope$
- Linearized following [6]

2. Formulate Bidding Heuristic

Optimizing market stages separately $[3,6,8] \rightarrow$ Myopic bidding heuristic

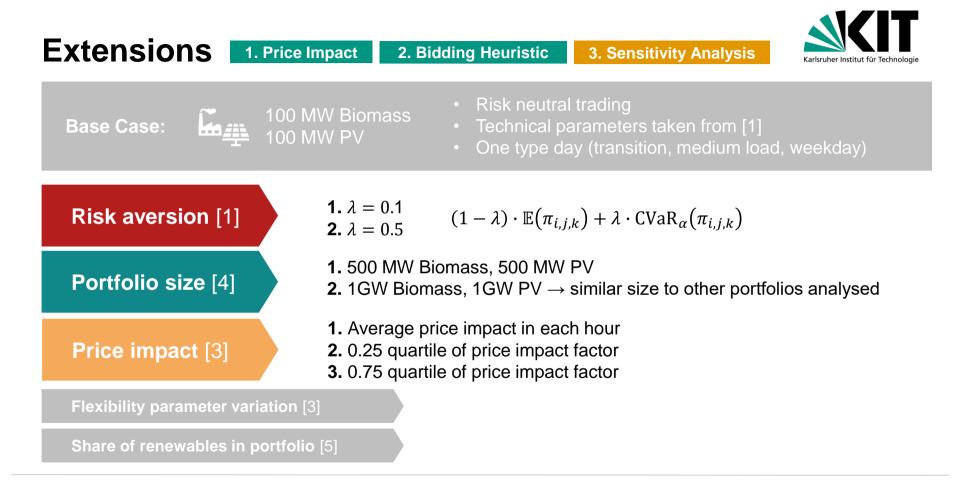
Stage 1:

Maximise profit aFRR & DAM assuming average realizations of DAM scenarios

 x_i^{aFRR}

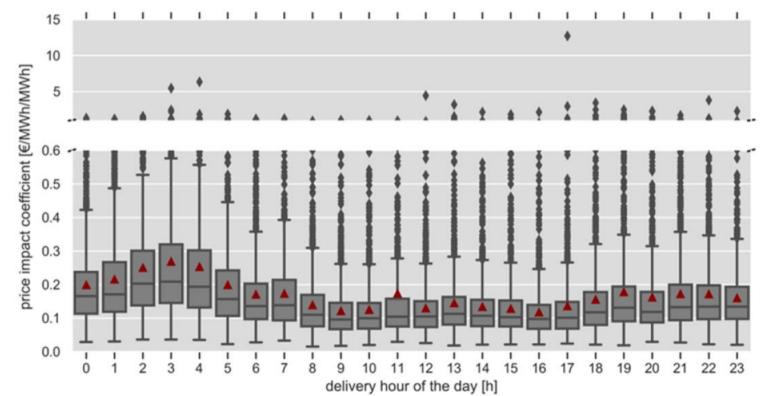
 $x_{i,j,k,qh}^{DA}$

Stage2:


Maximize profit DAM ~

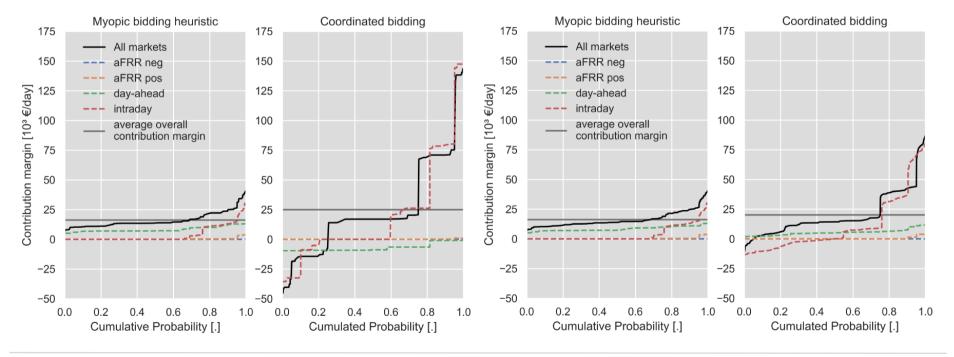
Stage 3:

Maximize profit IDM



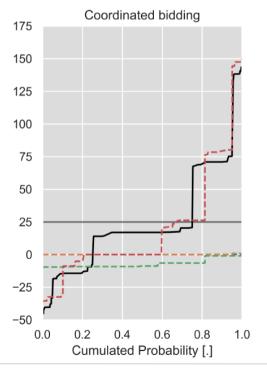
- Follow up on interdependencies in literature
- Analyse spread of average contribution margin = value of coordination

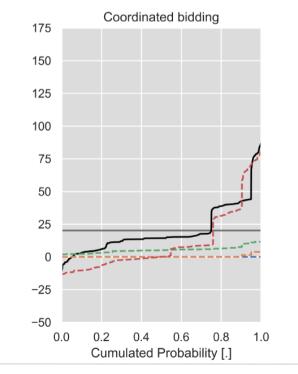
Largest price impact during night and smallest in the peak hours

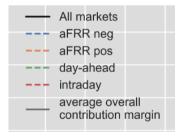


Price making has little impact on heuristic, but large impact on coordinated trading strategy

Price taking


Price making


Less speculation on high intraday prices



Price taking

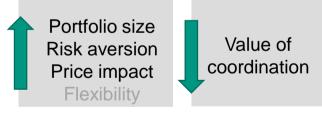
Price making

High variance across type days complicates drawing general conclusions

Gain of coordination for portfolio depends on:

- Price relations and steepness of supply curve in market segments
- Inframarginal / extramarginal power plant
- Share of renewable generation
- Flexibility of portfolio / degrees of freedom in dispatch

For case study:


- In summer lower than in transition and winter
- Weighted relative value of coordination ~18%
- Pay attention when comparing relative values!

Conclusion

Summary

- Price impact depiction
 - Price impact for IDM modelled
 - Price impact estimation through empirical data (2019-2020)
 - Extension of stochastic optimization model computationally expensive but feasible through piece-wise linearization
- Benefit of coordinated bidding
 - Overestimation of IDM profitability by neglecting price making (Kraft et al. 2022)
 - Lower but robust value of coordination across markets
 - Large impact of uncertainty modelling and portfolio configuration on value of coordination (no one-size-fits-it-all conclusion)
 - Given an increase in renewables and the importance of IDM, further increase in importance can be expected for coordinated bidding

Outlook

Conclusion

Summary

Outlook

- Updating of scenarios to more recent data
- Evaluation of advantages of stochastic approach regarding risk exposure
- Scalability of model
- Interdependencies of influencing factors
 - Which situations require which degree of coordination?
 - How do sensitivities interact with each other?
- Add further technologies, e.g. storages of different time scales
- Translate principles to long-term energy markets

Thanks for your attention!