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Achieving a Net Zero Carbon Economy 

requires:

Much more renewables Much more storage Much more grid infrastructure
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(+Energy Management*)

*Software solutions to efficiently manage energy at a local level (household, office, microgrid)

Much more renewables Much more storage Much more grid infrastructure

Achieving a Net Zero Carbon Economy 

requires:
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● Maria Rain, Kärnten (AT): 3 PV Systems, 9 Homes with Battery System, fire-fighter station with a 

lot of need for hot water

● Investments are already done; see Cosic et al. (don’t consider investment costs of technologies)



Energy System
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GOAL :Satisfy the energy demand in Maria Rain at the lowest possible cost (or CO2 emissions). 
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Microgrids vs. Energy Communi)es

Energy Communities
- Legal Framework
- EU Clean Energy Package
- Activate citizen participation
- For billing only (contractual)
- Benefits [1]: 

1) Reduced Grid Fee
2) Reduced Taxes

Microgrids
- Technical Framework
- Grid-connected / Islanded
- Cluster of interconnected loads 
- Microgrid controller (hardware+software)
- Benefits: 

1) Reduced Energy Costs

[1] https://energiegemeinschaften.gv.at/vorteile-von-energiegemeinschaften/
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Electricity Tariffs (Energy Costs)
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● The energy costs are typically calculated by multiplying the a rate (e.g., c€/kWh) with a quantity 

of energy.

● There are 4 major electricity tariff structures:

1) Flat Tariff – constant rate [c€/kWh] over the whole contractual period

2) Time-of-Use – variable rate [c€/kWh] depending on the time of the day; or type of day

3) Demand Charge – an additional power rate [€/kW] penalty multiplied with the highest 

peak demand; especially prevalent in industry (USA)

4) Real-time-Pricing – Spot market prices are passed down to the consumer; see Norway
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Tariff Structure

Grid Exchange
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Methods



Economic Model Predic)ve Control
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1. Model + Predictive + Control in loop:

• Model of the System: State and Input Variables

• Predict the future state variables of the System Model

• Control by updating the state variable of the real system 𝐸!"#;%&#
'%()*+ = 𝐸!",;%&#

'%()*+ ∀ 𝑡 > 0

ℎ- 𝑋! = 𝑦!

TBC



Predic've – Mul)-Step Forecas)ng
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• Features vary in importance over the forecast horizon:

• Division of the forecast horizon h into very short-term and short-term

• Learning a separate model for those two horizons, and concatenating their 

output

ŷ#:/ = ŷ#:'0(+*1 #; ŷ':/0(+*1 2

s = argmin
'

ES#:'0(+*1 #; ES':/0(+*1 2



Model – System Op)miza)on
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• At each t, the following cost minimization is solved as a Multi-Integer Linear Program 

with an index of j

𝐶 = 4
!",

/

𝐶!
3%414%5 − 𝑃!

'61*' =4
!",

/

𝐸!
7)4+ ∗ 𝑠!

83)9/6'* − 𝐸!
*:8()%;<== + 𝐸!

*:8()%>? ∗ 𝑠!
'61*'

Subject to:

𝐸!
7)4+ + 𝐸!(@'4%*>? + 𝐸!(@'4%*;<== = 𝐸!1(6+ + 𝐸!

;<==A() + 𝐸!>%B

𝐻!>%B + 𝐻!
CB=A)(D = 𝐻!1(6+ + 𝐻!

CB=A()

OF

Electrical Energy Balance Constraint

Heat Energy Balance Constraint

“Continuity” Constraints

𝐸!'%()*+ = 𝐸!E#'%()*+ + 𝐸!4@ + 𝐸!(3% − 𝐸!1('' ∀𝑡 > 0

𝐸!'%()*+ = 𝐶𝑎𝑝<= ∗ 𝐸4@4%'%()*+ + 𝐸!4@ + 𝐸!(3% − 𝐸!1('' 𝑡 = 0𝐸!4@ ≤ 𝐸!FGH ∗ 𝑁

𝐸!
(3% ≤ 1 − 𝐸!

FGH ∗ 𝑁



Model – Input Predic)ons as Parameters
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• Forecasts are Input Parameters

𝐸!>? = 𝐸!
*:8()%>? + 𝐸!(@'4%*>?

𝐸!
7)4+ + 𝐸!(@'4%*>? + 𝐸!(@'4%*;<== = 𝐸!1(6+ + 𝐸!

;<==A() + 𝐸!>%B

• Train + Test Period Split – Train Data was available before operation, test was not



Model – Tariff Scenarios
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● There are 4 major electricity tariff structures:

1) Flat Tariff – constant rate [c€/kWh] over the whole contractual period

2) Time-of-Use – variable rate [c€/kWh] depending on the time of the day; or type of day

3) Demand Charge – an additional power rate [€/kW] penalty multiplied with the highest peak

demand

4) Real-time-Pricing – Spot market prices are passed down to the consumer; see Norway



Uncertainty
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In an open-loop environment forecast errors need to be explicitly accounted for:
• Calculate a utility exchange variable u

𝑢% = 𝐸!"#,%
7)4+ − 𝐸!"#;%

*:8()%>? + 𝐸!"#;%
*:8()%;<== + 𝑒%

• The net error 𝒆𝒕:

𝑒%@*% = 𝑒%1(6+ − 𝑒%>?

𝑒%1(6+ = 𝑦%1(6+ − ŷ%1(6+

𝑒%>? = 𝑦%>? − ŷ%>?

• Calculation of the costs incurred by the per kWh rates and demand charge penalty:

𝐶%)6%*' = C
𝑢% ∗ 𝑠%

83)9/6'*' , 𝑖𝑓 𝑢% > 0
𝑢% ∗ 𝑠%'61*' , 𝑖𝑓 𝑢% < 0
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝐶CK = max 𝑢% ∗ 𝑠CK

𝐶 = 4
%

𝐶%)6%*' + 𝐶CK

• Final Costs by summing the rate costs over time index t and adding the penalty



Cost Savings
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• Operate the same month with our controller (=Optimization Case) and a rule-based 

controller (=Reference Case) – rule-based: e.g., if surplus pv -> charge battery

• Operate our controller once with perfect foresight and once without for all tariff scenarios

• Carry out a sensitivity analysis to maximum energy capacity of the battery system 

• Savings are calculated in comparison to the Reference Case, and foregone savings by 

comparing the savings of perfect forecast with those of real forecast runs 



Results
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Results: Forecast Quality
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Q: How ‘good’ are the forecasts?

A: By visual and numerical inspection they are accurate, also compared to the literature 



Results: Forecast Accuracy Trajectory
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Q: Was the model switching approach warranted:

A: Yes, the error propagation of the recursive method is substantial and is truncated by the approach



Opera)onal Dispatch – CO2
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• CO2 Minimization: We would expect that the REC Buys when electricity is green



Opera)onal Dispatch – FT-DC

20

• Cost Minimization under Demand Charges: We would expect peak Shaving

• With perfect foresight, this happens

• With real forecasts we increase peaks



Foregone Savings & Sensi)vity to BESS
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Q: What are the potential savings of the controller if we had not forecast errors?

A: Significantly higher than in real operation.

Q: How do the real and perfect forecast savings evolve with greater BESS size?

A:  A larger BESS size increases the discrepancy between real and perfect forecast savings



Conclusions & Future Work
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• Mixed-Integer Linear Program that models the sector-coupling of the electricity and heat 

systems within the renewable energy community

• Forecasting method allows multi-step ahead forecasting dealing with the problem of 

recursive approaches. 

• Results indicate that without forecast errors the proposed controller can outperform a 

rule-based dispatch strategy by 24.7% in operational costs and by 8.4 % in CO2 

emissions

• But if the controller is used in a realistic environment, where forecasting is required, the 

same savings are reduced to 3.3 % and 7.3 %, respectively.

• We suggest that forecast errors are a significant cost driver that easily outweigh the 

benefits of a larger BESS.

• Future research in forecasting should thus focus on developing forecasting algorithms 

that can account for the bias in tariff structures.

• handling of forecast errors internally rather than through utility exchanges (hierarchical 

control)
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