

Fraunhofer Institute for Systems and Innovation Research ISI

IEWT 2023, Wien 16/02/2023

Anlagenspezifische Modellierung der Transformation in der Europäischen Schwerindustrie

Aktueller Stand

Was haben wir zur Modellierung der Industrienachfrage – und wie weit können wir gehen?

Bisherige Modellierungsansätze

- Häufig generische Annahmen und Aggregation von Industriebranchen oder Produktionsanlagen
 - Aggregation häufig durch <u>Datenverfügbarkeit</u> determiniert
 - Nationale Statistiken (Produktion, Wertschöpfung, etc.)
 - Entwicklung als prozentuale Änderung des Bestands
 - Exogene Annahmen zur zeitlichen Entwicklung
 - Vernachlässigung von regionalen Gegebenheiten

© Fraunhofer ISI

Agenten häufig als <u>Repräsentanten einer Gruppe</u> und nicht Berücksichtigung von "Individuen"

Verbesserung von räumlicher und zeitlicher Auflösung

- Transformationsentscheidungen benötigen detailliertere Analysen um wichtige Fragestellungen zu beantworten
 - Wo wird welche Infrastruktur benötigt?
 - Wann ist die Infrastruktur notwendig?
 - <u>Welche Faktoren</u> beeinflussen sowohl die räumliche als auch die zeitliche Transformation?
- Individuelle Betrachtung einzelner Standorte mit spezifischen Eigenschaften
 - Berücksichtigung des <u>Anlagenbestandes</u>
 - Berechnung anhand Kenntnis über <u>Anlagenalter und</u>
 Reinvestitionszyklen

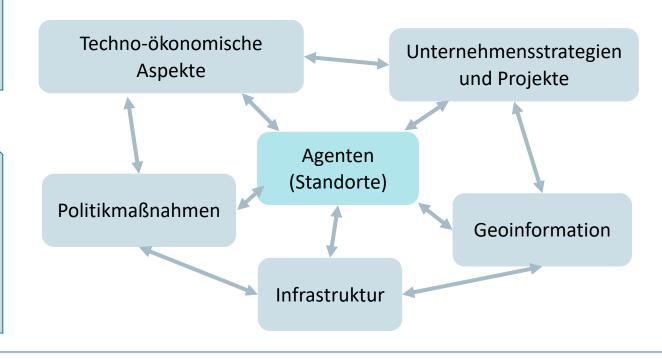
Neuer Modellierungsansatz: Schwerpunkt auf der Technologiediffusion von Nachfragetechnologien

- Marktdiffusion und Substitution von Anlagen, berechnet auf der Grundlage des Alters und der typischen Lebensdauer der Anlagen
- Beeinflussung der Technologieentscheidung durch die Umsetzung verschiedener Indikatoren (derzeit: abgebildet als technoökonomische Parameter)

Vision und Stand und der Industriemodellierung

Was wir haben: FORECAST industry

- Repräsentation des gesamten Industriesektors (bottom-up)
- Sehr detaillierte Informationen auf Prozessebene
- Ergebnisse: nationale Ebene und nachgelagerte Regionalisierung
 - Verteilung der Nachfrage anhand von Indikatoren -> Unschärfe
- Exogen vorgegebene oder auf statistischen Theorien basierte Technologiediffusion


Was wir erreichen wollen:

- Standortspezifische Technologiediffusion
 - Grundlage: aktueller Anlagenbestand in der Industrie
 - Berücksichtigung techno-ökonomischer Indikatoren
- Besseres Verständnis für die Raum-Zeit-Dynamik der Industrietransformation

© Fraunhofer ISI

Vision

Agentenbasiertes Bottom-up-Modell für industrielle Transformationspfade mit georeferenzierter Auflösung

Industrie Standortdatenbank

Für energieintensive Industrien in Europa

Industrie Standortdatenbank

Energieintensive Industriestandorte

Eisen und Stahl

Nicht-metall. Mineralien

(Grundstoff-) Chemie

Nichteisen Metalle

Papier und Zellstoff

Region (ID, Name)

Anlagenalter (Jahr)

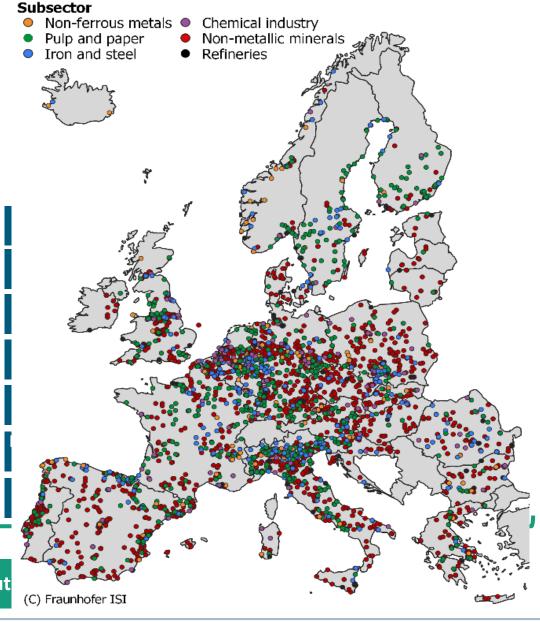
Unternehmen (ID, Name)

Geokoordinaten (Lat., Long.)

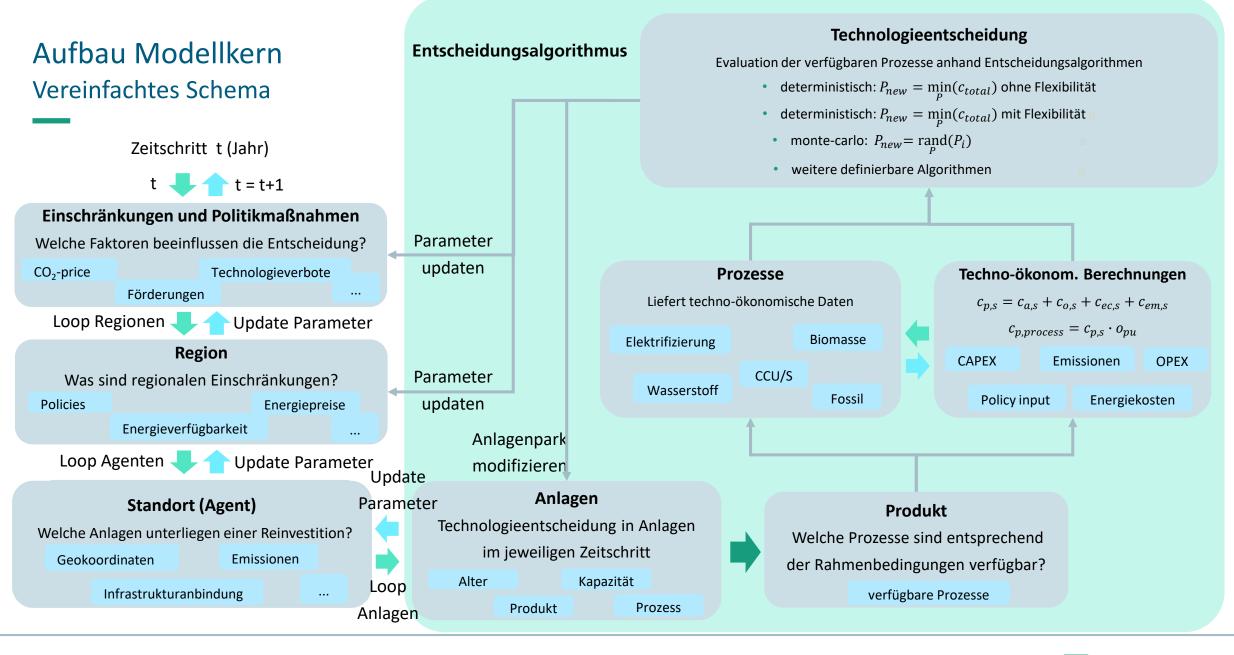
Produkte

Kapazitäten | (t/Jahr)

Weitere..

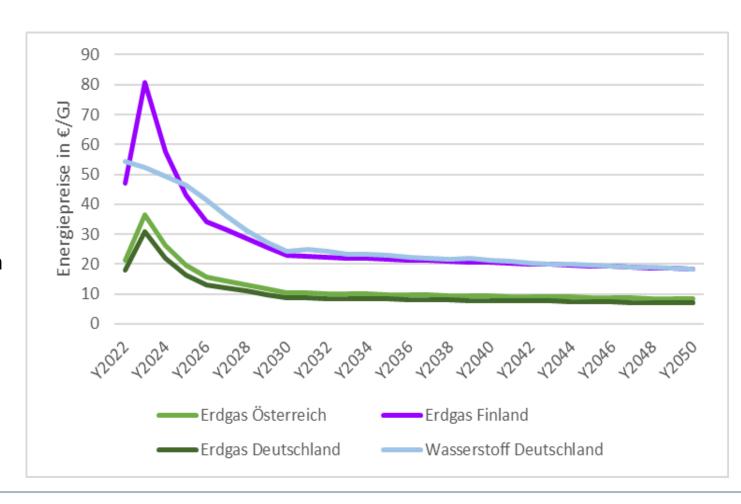

Prozesse

status quo


Emissionen (ETS)

(tCO₂/Jahr)

Georeferenzierter Modell-Input

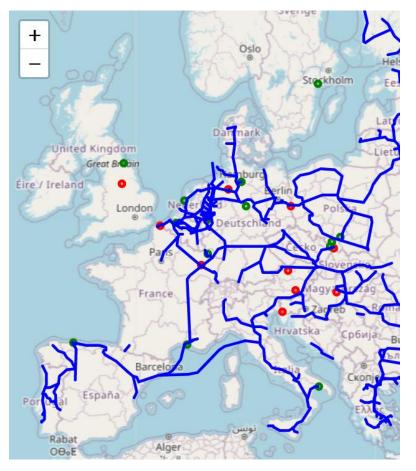


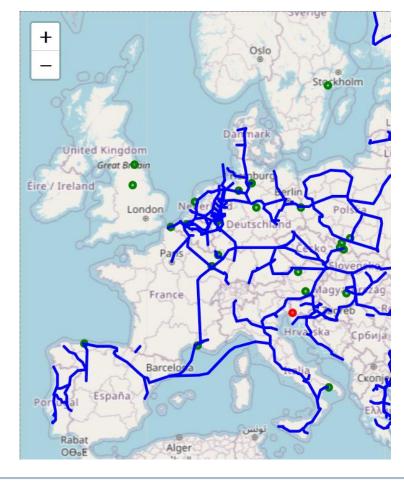
Haupttreiber für Entwicklungen

Zu einer klimaneutralen Stahlproduktion

Annahmen:

- Lebensdauer
 - Hochofen (Primärstahl): 20-25 Jahre
 - Direktreduktion (Primärstahl): 25 Jahre
- Energiepreise
 - Angepasster Erdgaspreis an aktuelle Situation
 - Preisrückgang im Zeitverlauf bis 2030
 - Starker Rückgang Wasserstoffpreis bis 2030
- Politikmaßnahmen
 - CO₂-Preis: Anstieg von 80 auf 300 €/tCO₂




Beispiel Primärstahlherstellung

Möglicher zeitlicher Anlagenaustausch

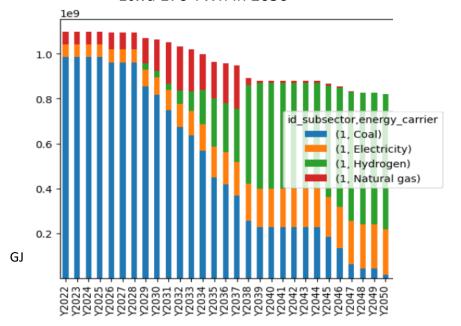
2022 2035 2050

Hochofen

Direktreduktion Erdgas

Hydrogen Backbone

Direktreduktion Wasserstoff

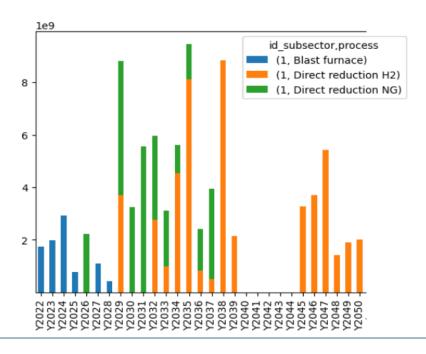

© Fraunhofer ISI

Beispiel Primärstahlherstellung

Energieverbrauch und Investitionen

Energiebedarf:

- DRI-Anlagen ab 2026 (zunächst Erdgas)
- Wasserstoff in geringen Mengen ab 2029
- Etwa 60 TWh bis 2035
- Etwa 120 TWh bis 2040
- Etwa 170 TWh in 2050


© Fraunhofer ISI

Folgen:

- **55%** Emissionsreduktion für die Primärstahlherstellung nicht erreichbar
- "Lock-In" bis mindestens 2045 durch Hochofen-Investitionen

Investitionen:

- 9 Milliarden Investitionen in Hochöfen bis 2030!
- 14 Milliarden Investitionen in DRI bis 2030
- 72 Milliarden bis 2040
- 90 Milliarden ab 2040, wegen Reinvest der Hochöfen

15.02.2023

ArcelorMittal veröffentlicht Konzept für kohlenstoffarmen Stahlstandard

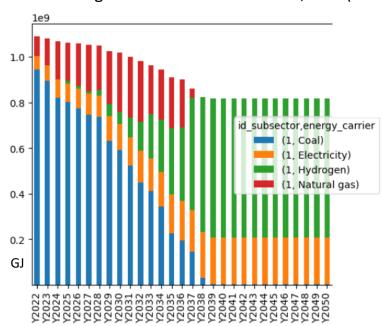
Beispiel Primärstahlherstellung

Berücksichtigung der Branchendynamik

Grünes Licht für grünen Stahl

13.07.2022 | Pressemeldung der Salzgitter AG

Ankündigungen Stahlhersteller (Deutschland):

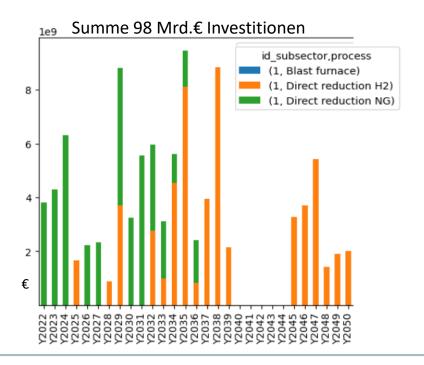

Insgesamt Investitionen von über 15 Mrd.€ in 11,3 Mt DRI-Kapazität:

Duisburg: ThyssenKrupp: 0,4 Mt (2025); 3 Mt (2030)

Bremen: ArcelorMittal: 2,4 Mt (2027); 3,5 Mt (2030)

Salzgitter: Salzgitter: 1,9 Mt (2027); 3,8 Mt (2030)

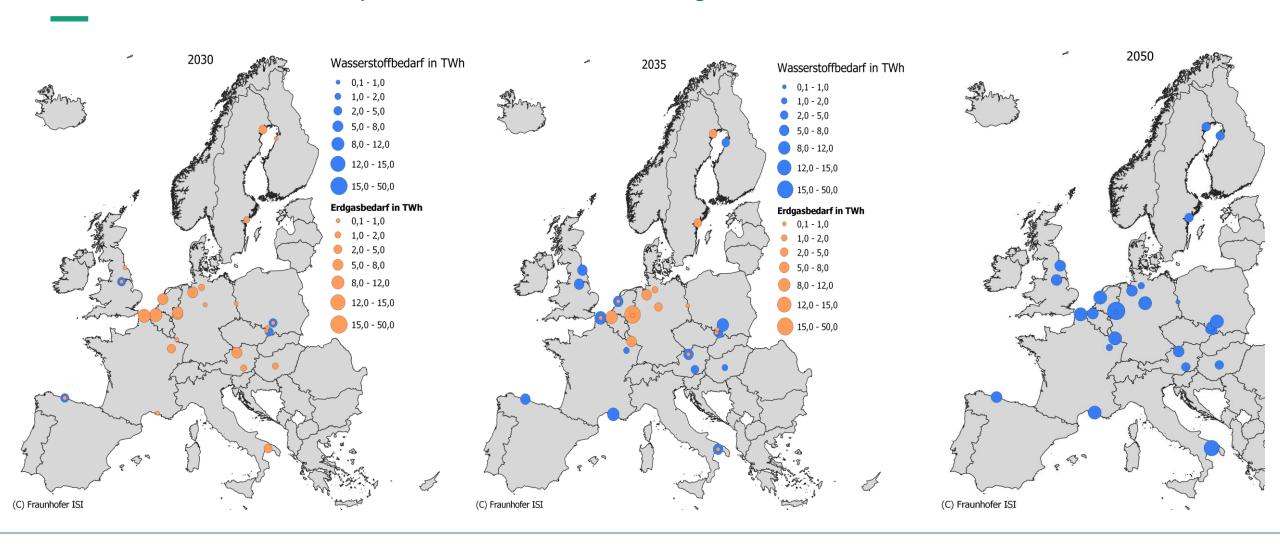
Hamburg: ArcelorMittal: 0,1 Mt (2025); 1 Mt (2030)



© Fraunhofer ISI

Folgen:

- 55% Emissionsreduktion bis 2030 rückt näher ©
 - Früher höhere Investitionen notwendig (~30 Mrd. bis 2030)
 - "Lock-In" vermeidbar und leichterer Wechsel auf Wasserstoff
- "Zweite" Investitionsphase möglicherweise hinfällig


thyssenkrupp beschleunigt grüne Transformation: Bau der größten deutschen Direktreduktionsanlage für CO2armen Stahl entschieden

Räumliche Entwicklung

Der Transformation der europäischen Primärstahlherstellung

15.02.2023

Zusammenfassung und Schlussfolgerungen

Neuer Modellansatz

- Standortscharfe Auflösung auf der Nachfrageseite
- Hohe zeitliche Auflösung der Technologiediffusion
- Auswirkung politischer Maßnahmen und regionaler Mechanismen
- Auswertung des Infrastrukturbedarfs verschiedener Regionen durch große Nachfragecluster
- Berücksichtigung von Unternehmensstrategien umsetzbar

Transformation der europäischen Primärstahlherstellung

- Schnelles Handeln nötig, um Lock-In Investitionen zu vermeiden
- Erdgas als "Brückentechnologie" für die Stahlherstellung notwendig
- Hochlauf des europäischen Wasserstoffnetzes für erfolgreiche Transformation

© Fraunhofer ISL / TNO

- Für eine vollständige Erfassung wären Informationen über nicht-energieintensive Industrien erforderlich.
- Nicht bekanntes "Refactoring" kann zu falschen Ergebnissen für einen Standort führen
- Starke Abhängigkeit von den eingegebenen Daten und deren Zuverlässigkeit
- Hoher Aufwand der Ergebnisvalidierung
- Frühe "Fehlinvestitionen" verzögen Klimaneutralität um etwa 10 Jahre
- Zweite Investitionsphase bei Rückgang in der Produktion durch frühes Handeln vermeidbar

Fraunhofer Institute for Systems and Innovation Research ISI

Vielen Dank für die Aufmerksamkeit!

Kontakt

Marius Neuwirth

Competence Center Energietechnologien und Energiesysteme Geschäftsfeld Nachfrageanalysen und -projektionen

Mail: Marius.Neuwirth@isi.fraunhofer.de