

An European wide meteorological data set suitable for electricity modelling

supply and demand for actual climate and climate change projections

Formayer H.¹, Leidinger D.¹, Maier P.¹, Nadeem I.¹, Schöninger F.² Resch G.^{2,3}, Hasengst F.², Suna D.³, Pardo Garcia N.³, Totschnig G.³

¹BOKU Vienna – Institute of Meteorology and Climatology ²TU Wien – Energy Economics Group (EEG) ³AIT – Center for Energy

.....

for electricity modelling

Motivation	Data set	Variables	Conclusion		
	Motivation				
	Europe faces g	great challange	s regarding its energ	gy system	
	The energy sy				
					ergy
					are
	Many types of weather				g-term

TO

for electricity modelling

Motivation	Data set	Variables	Conclusion	<u> </u>
	Motivation			
	•	•	s regarding its energ climate neutral by 2	
				ergy
				are
	Many types of weather			g-term

for electricity modelling

Motivation	Data set	Variables	Conclusion	
	Motivation			
		•	s regarding its ener climate neutral by	
			e demands and thr ooling requirement	ergy
				are
	Many types of weather			g-term

TO

for electricity modelling

Motivation	Data set	Variables	Conclusion	
	Motivation			
		, v	s regarding its energe climate neutral by 2	
	-		e demands and three cooling requirements	ergy
		•	mplex and interlinke atus quo and predic	are
	 Many types of weather 			g-term
				oast,

TO

for electricity modelling

Motivation	Data set	Variables	Conclusion		
	Motivation				
	Europe faces g	great challange	s regarding its energy	v system	
	The energy sy	stem should be	climate neutral by 20)50	
	•		e demands and threa ooling requirements,		ergy
	0, ,	•	mplex and interlinked atus quo and predict t		are
	 Many types of weather 	green energy p	production rely on the	current or long	g-term

MFT[®]

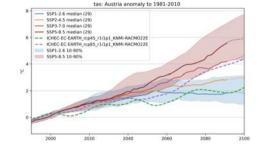
for electricity modelling

Motivation	Data set	Variables	Conclusion		
	Motivation				
	Europe faces g	great challange	s regarding its energy	v system	
	The energy sy	stem should be	climate neutral by 20)50	
			e demands and threa ooling requirements,		ergy
		•	mplex and interlinked atus quo and predict t		are
	 Many types of weather 	green energy p	production rely on the	current or long	g-term
	•		ble meteorological da d as input to energy s		oast,

MFT[®]

U Institute of Meteorology and Climatelogy

Motivation


Data set

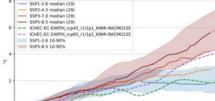
oles

Conclusior

- ERA5 and ERA5 Land → merged to one data set
- COSMO REA6 Reanalysis (150 m windspeed)
- 2 EURO-CORDEX climate scenarios: ICHEC-EC-EARTH - KNMI-RACCMO22E (RCP4.5, RCP8.5)
- eHYPE river discharge for ERA5 and scenarios

Total > 4TB input data

Data set


Motivation

ables

Conclusior

- ERA5 and ERA5 Land → merged to one data set
- COSMO REA6 Reanalysis (150 m windspeed)
- 2 EURO-CORDEX climate scenarios: ICHEC-EC-EARTH - KNMI-RACCMO22E (RCP4.5, RCP8.5)
- eHYPE river discharge for ERA5 and scenarios

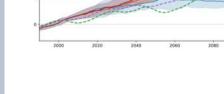
Total > 4TB input data

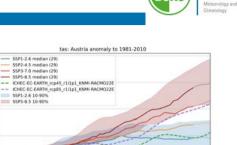
tas: Austria anomaly to 1981-2010

2000 2020 2040 2060 2080 2100

Motivation

Data set


bles


Conclusion

ý,

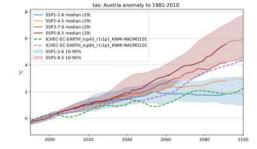
- ERA5 and ERA5 Land → merged to one data set
- COSMO REA6 Reanalysis (150 m windspeed)
- 2 EURO-CORDEX climate scenarios: ICHEC-EC-EARTH - KNMI-RACCMO22E (RCP4.5, RCP8.5)
- eHYPE river discharge for ERA5 and scenarios

Total > 4TB input data

2100

Motivation

Data set


ıbles

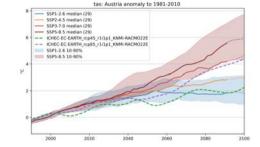
Conclusior

- ERA5 and ERA5 Land → merged to one data set
- COSMO REA6 Reanalysis (150 m windspeed)
- 2 EURO-CORDEX climate scenarios: ICHEC-EC-EARTH - KNMI-RACCMO22E (RCP4.5, RCP8.5)
- eHYPE river discharge for ERA5 and scenarios

■ Total > 4TB input data

Meteorology and

Data set

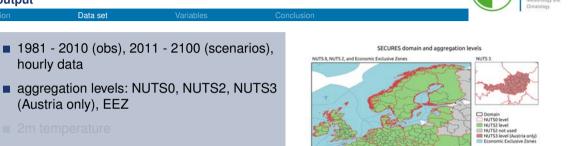

IVIEI Institute of Meteorology and Climatelogy

Motivation

ables

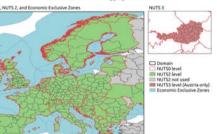
Conclusior

- ERA5 and ERA5 Land → merged to one data set
- COSMO REA6 Reanalysis (150 m windspeed)
- 2 EURO-CORDEX climate scenarios: ICHEC-EC-EARTH - KNMI-RACCMO22E (RCP4.5, RCP8.5)
- eHYPE river discharge for ERA5 and scenarios
- Total > 4TB input data



Data set

- 1981 2010 (obs), 2011 2100 (scenarios), hourly data
- aggregation levels: NUTS0, NUTS2, NUTS3 (Austria only), EEZ
- 2m temperature
- Global radiation and direct normal irradiation
- Potential wind power generation (onshore and offshore)
- Mean daily power generation from run-off-river and reservoir plants
- ca. 45 GB of uncompressed .csv files

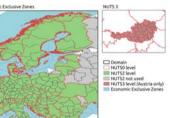


- Global radiation and direct normal irradiation
- Potential wind power generation (onshore and offshore)
- Mean daily power generation from run-off-river and reservoir plants
- ca. 45 GB of uncompressed .csv files

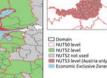
Data set

- hourly data
- aggregation levels: NUTS0, NUTS2, NUTS3 (Austria only), EEZ
- 2m temperature

- 2m temperature
- Global radiation and direct normal irradiation



- aggregation levels: NUTS0, NUTS2, NUTS3 (Austria only), EEZ
- 2m temperature
- Global radiation and direct normal irradiation
- Potential wind power generation (onshore and offshore)



- aggregation levels: NUTS0, NUTS2, NUTS3 (Austria only), EEZ
- 2m temperature
- Global radiation and direct normal irradiation
- Potential wind power generation (onshore and offshore)
- Mean daily power generation from run-off-river and reservoir plants

- aggregation levels: NUTS0, NUTS2, NUTS3 (Austria only), EEZ
- 2m temperature
- Global radiation and direct normal irradiation
- Potential wind power generation (onshore and offshore)
- Mean daily power generation from run-off-river and reservoir plants
- ca. 45 GB of uncompressed .csv files

Processing CORDEX data

Workflow

Data set

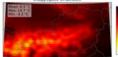
С

Regrid to ERA5L

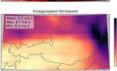
- Provide data on same grid
- CORDEX Data is projected curvilinear
- ERA5L is on Plate Carree (lat-lon)

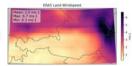

Bias correction

- Get rid of inherent model biases
- Make data compareable


Temporal disaggregation

- Structure is preserved
- Daily temperature follows two cosine functions
- Surface wind is calculated via fractions of the historical ERA5L data Hourty wind divided by daily mean
- Solar radiation also uses statistics of historical ERA5L data


Disaggregated Radiation Max: 521 Sym2 Mix: 623 Sym2 300 -300



Disaggregated Temperature

ERAS Land Temperature

Mean Values of Austria of 1997

Institute of Meteorology and Climatology

Processing CORDEX data

Workflow

Data set

iables

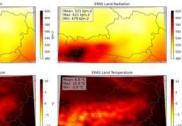
Conclusio

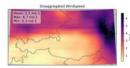
Mean: 521 kim 2

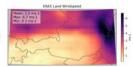
Max: 621 kjm-2 Min: 479 ktm-2

Regrid to ERA5L

- Provide data on same grid
- CORDEX Data is projected curvilinear
- ERA5L is on Plate Carree (lat-lon)


Bias correction


- Get rid of inherent model biases
- Make data compareable


Temporal disaggregation

- Structure is preserved
- Daily temperature follows two cosine functions
- Surface wind is calculated via fractions of the historical ERA5L data Hourty wind divided by daily mean
- Solar radiation also uses statistics of historical ERA5L data

Mean Values of Austria of 1997

BOKU Institute of MEET

Processing CORDEX data

Workflow

Data set

riables

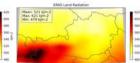
Conclusio

Mean: 521 kim 2

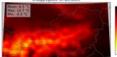
Max: 621 kjm-2 Min: 479 ktm-2

Regrid to ERA5L

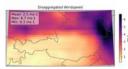
- Provide data on same grid
- CORDEX Data is projected curvilinear
- ERA5L is on Plate Carree (lat-lon)

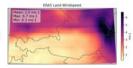

Bias correction

- Get rid of inherent model biases
- Make data compareable


Temporal disaggregation

- Structure is preserved
- Daily temperature follows two cosine functions
- Surface wind is calculated via fractions of the historical ERA5L data Hourly wind divided by daily mean
- Solar radiation also uses statistics of historical ERA5L data



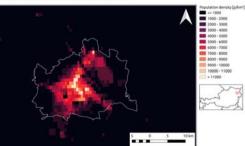

Disaggregated Temperature

Mean Values of Austria of 1997

Meteorology and Climatology

Formayer et al.

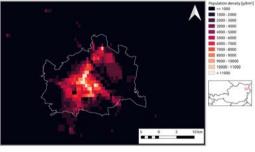
Temperature and radiation


Motivation	Data set	Variables	Conclusion	\smile	

motivation and methods

- electricity demands increase with population density

Population density in the region of Vienna (ISOPOP)



Temperature and radiation

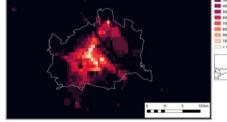
Motivation	Data set	Variables	Conclusion	\smile	

motivation and methods

- electricity demands increase with population density
- solar panels are more likely on roofs
- people tend to live in the valleys, where the temperatures are higher
- thus temperature and radiation were additionally weighted with population
- temperature was regridded using an elevation correction to the 1 km ISOPOP raster before aggregating

6/18

Population density in the region of Vienna (ISOPOP)


Temperature and radiation

	Motivation	Data set	Variables	Conclusion		
--	------------	----------	-----------	------------	--	--

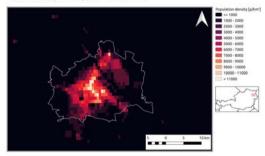
motivation and methods

- electricity demands increase with population density
- solar panels are more likely on roofs
- people tend to live in the valleys, where the temperatures are higher
- thus temperature and radiation were additionally weighted with population
- temperature was regridded using an elevation correction to the 1 km ISOPOP raster before aggregating

nsity

Population density in the region of Vienna (ISOPOP)

sulation density [p/km/]


Temperature and radiation

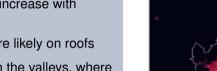
Motivation	Data set	Variables	Conclusion	\sim	

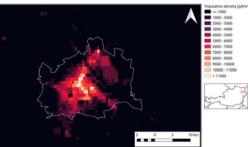
motivation and methods

- electricity demands increase with population density
- solar panels are more likely on roofs
- people tend to live in the valleys, where the temperatures are higher
- thus temperature and radiation were additionally weighted with population

 temperature was regridded using an elevation correction to the 1 km
 ISOPOP raster before aggregating

Population density in the region of Vienna (ISOPOP)

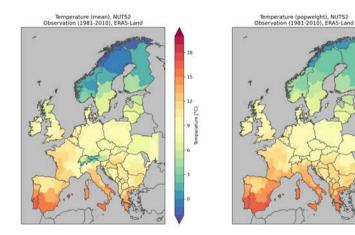



Temperature and radiation

Motivation Data set Variables Conclusion
--

motivation and methods

- electricity demands increase with population density
- solar panels are more likely on roofs
- people tend to live in the valleys, where the temperatures are higher
- thus temperature and radiation were additionally weighted with population
- temperature was regridded using an elevation correction to the 1 km ISOPOP raster before aggregating



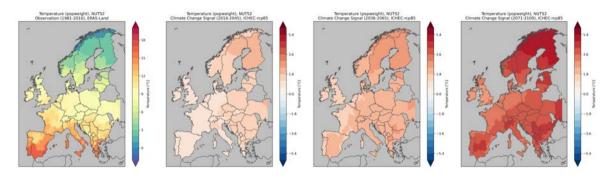
Population density in the region of Vienna (ISOPOP)

arithmetic mean vs. population weighting

Motivation	Data set	Variables	Conclusion	-

18

15


12

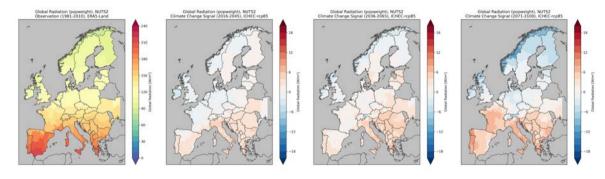
0

Temperature **RCP 8.5 - population weighted**

Meteorology and

Global radiation

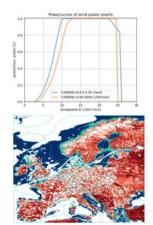
RCP 8.5 - population weighted



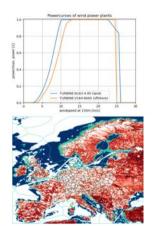
Motivation

set

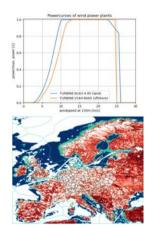
Variables


Conclusior

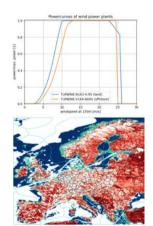
COSMO REA6 was regridded to the target grid (ERA5-Land)


- ERA5(Land) and EURO-Cordex surface wind was adjusted with QM to match the 150 m wind from COSMO REA6
- for onshore and offshore representative turbine types were choosen
- the normalized power was calculated by applying the power curves
- weights for aggegating are the fraction of suitable area for wind power plants

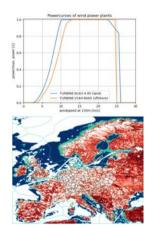
 COSMO REA6 was regridded to the target grid (ERA5-Land)


- ERA5(Land) and EURO-Cordex surface wind was adjusted with QM to match the 150 m wind from COSMO REA6
- for onshore and offshore representative turbine types were choosen
- the normalized power was calculated by applying the power curves
- weights for aggegating are the fraction of suitable area for wind power plants

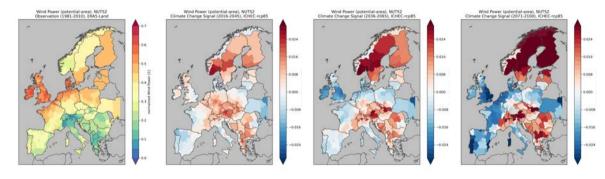
 COSMO REA6 was regridded to the target grid (ERA5-Land)


- ERA5(Land) and EURO-Cordex surface wind was adjusted with QM to match the 150 m wind from COSMO REA6
- for onshore and offshore representative turbine types were choosen
- the normalized power was calculated by applying the power curves
- weights for aggegating are the fraction of suitable area for wind power plants

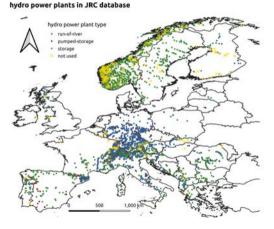
 COSMO REA6 was regridded to the target grid (ERA5-Land)


- ERA5(Land) and EURO-Cordex surface wind was adjusted with QM to match the 150 m wind from COSMO REA6
- for onshore and offshore representative turbine types were choosen
- the normalized power was calculated by applying the power curves
- weights for aggegating are the fraction of suitable area for wind power plants

 COSMO REA6 was regridded to the target grid (ERA5-Land)

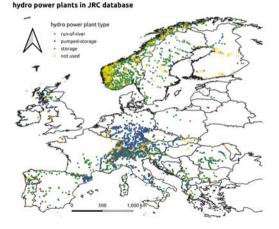

- ERA5(Land) and EURO-Cordex surface wind was adjusted with QM to match the 150 m wind from COSMO REA6
- for onshore and offshore representative turbine types were choosen
- the normalized power was calculated by applying the power curves
- weights for aggegating are the fraction of suitable area for wind power plants

Wind power onshore RCP 8.5 - potential area


Meteorology and

hydro power plant data: JRC data base

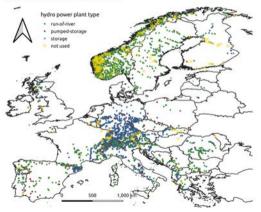
Variables



 hydro power plant data: JRC data base
 river discharge data (*Q*): SMHI eHYPE (ERA5 and ICHEC-RACMO22E driven)

Variables

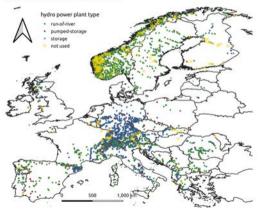
- **assumption**: $P = s_0 Q$
- however hydro plants have got limited capacity P_{max} and cut-off runoff Q_{max=}Q(P_{max}) is unknown
- Q_{max} can be estimated in an iterative process
- if annual production is unknown, representative full load hours for each country are assumed



hydro power plant data: JRC data base

Variables

- river discharge data (Q): SMHI eHYPE (ERA5 and ICHEC-RACMO22E driven)
- **assumption:** $P = s_0 Q$

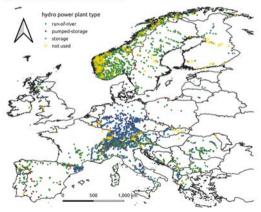


hydro power plant data: JRC data base

Variables

- river discharge data (Q): SMHI eHYPE (ERA5 and ICHEC-RACMO22E driven)
- assumption: $P = s_0 Q$
- however hydro plants have got limited capacity P_{max} and cut-off runoff Q_{max=}Q(P_{max}) is unknown
- *Q_{max}* can be estimated in an iterative process
- if annual production is unknown, representative full load hours for each country are assumed

Conclusion



hydro power plant data: JRC data base

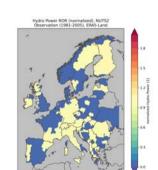
Variables

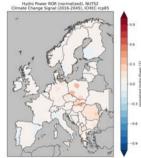
- river discharge data (Q): SMHI eHYPE (ERA5 and ICHEC-RACMO22E driven)
- **assumption:** $P = s_0 Q$
- however hydro plants have got limited capacity P_{max} and cut-off runoff $Q_{max=}Q(P_{max})$ is unknown
- \square Q_{max} can be estimated in an iterative process



hydro power plant data: JRC data base

Variables


- river discharge data (Q): SMHI eHYPE (ERA5 and ICHEC-RACMO22E driven)
- assumption: $P = s_0 Q$
- however hydro plants have got limited capacity P_{max} and cut-off runoff Q_{max}=Q(P_{max}) is unknown
- *Q_{max}* can be estimated in an iterative process
- if annual production is unknown, representative full load hours for each country are assumed



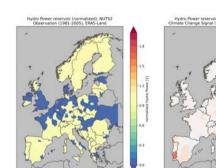
Hydro power from run-of-river plants **BCP 8.5** - normalized

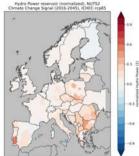


Meteorology and

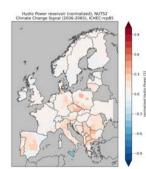
Variables

Hydro Power ROR (normalized), NUT52 Climate Change Signal (2071-2100), ICHEC-rcp85 03 E 00 -0.3 \$ -0.6


-0.3 8


-0.6

Hydro power from reservoirs **BCP 8.5** - normalized



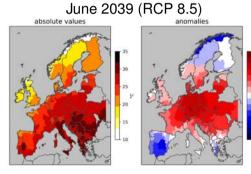
Meteorology and

Variables

Hydro Power reservoir (normalized), NUTS2 Climate Change Signal (2071-2100), ICHEC-rcp85 03 = 00 -0.3 \$ -0.6

Extreme heat

Maximum temperature



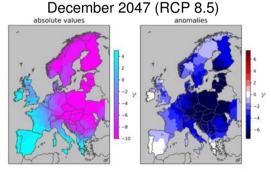
Motivation

Variables

Conclusion

Monthly mean maximum temperature

Anomalies	Austria	Europe
T [℃]	5.3	4.0
Tmax [°C]	6.3	4.4
Tmin [℃]	4.0	3.4
WP [%]	56.3	95.5
WP offshore [%]	-	92.1
Radiation [%]	120.1	110.6
HP [%]	58.2	107.5


Dark doldrum (extreme cold)

Minimum temperature

Monthly mean minimum temperature

Variables

Anomalies	Austria	Europe
T [℃]	-5.1	-3.3
Tmax [°C]	-5.0	-3.6
Tmin [℃]	-5.5	-2.9
WP [%]	117.1	90.0
WP offshore [%]	-	94.3
Radiation [%]	98.3	93.7
HP [%]	78.8	142.7

Motivation Data set Variables Error modelling the energy system of

BCKU MET Institute of Meteorology and Climatelogy

-	For modelling the energy system of Europe long-term, high quality climate data for the past and future is required

Conclusion

Con	clusions			
ivation	Data set	Variables	Conclusion	
	•		tem of Europe long- future is required	term, high quality
	 We created a purpose 	comprehensive	e data set specificall	y designed for this
	The data will be a state of	pe made availat	ole to the communit	y in 2023

An European wide meteorological data set suitable for electricity modelling

Con	clusions			BOX
Motivation	Data set	Variables	Conclusion	
			tem of Europe long-te future is required	erm, high quality
	 We created a purpose 	comprehensive	data set specifically	designed for this
	Variables incl and cover 198		e, radiation, wind pow	ver, and hydro power
	The data will	be made availat	ole to the community	in 2023

Con	clusions			BOX
lotivation	Data set	Variables	Conclusion	
	•		tem of Europe lon future is required	g-term, high quality
	 We created a purpose 	comprehensive	data set specifica	ally designed for this
	 Variables inclu and cover 198 	•	e, radiation, wind p	power, and hydro power
	the data was a EEZ	aggregated to N	IUTS3 (Austria on	ly), NUTS2, NUTS0 and
	The data will b	be made availab	ole to the commun	ity in 2023

An European wide meteorological data set suitable for electricity modelling

Con	clusions			BO	K
lotivation	Data set	Variables	Conclusion		-
			em of Europe long uture is required	-term, high quality	
	 We created a purpose 	comprehensive	data set specifical	ly designed for this	
	 Variables inclu and cover 198 	•	, radiation, wind po	ower, and hydro powe	ər
	the data was a EEZ	aggregated to N	UTS3 (Austria only	/), NUTS2, NUTS0 a	no
	· · · · · · · · · · · · · · · · · · ·	data were used 45 GB of final d		ntermediate data and	ł
	The data will be a set of the data will b	e made availab	le to the communi	ty in 2023	

and

MET[®] Meteorology and

Con	clusions			BC	KU
lotivation	Data set	Variables	Conclusion		
			tem of Europe long future is required	g-term, high quality	
	 We created a purpose 	comprehensive	data set specifica	lly designed for this	
	Variables inclu and cover 198	•	e, radiation, wind p	ower, and hydro pow	er
	the data was a EEZ	aggregated to N	IUTS3 (Austria onl	y), NUTS2, NUTS0 a	and
	· · · · ·	data were used 45 GB of final o		ntermediate data and	b
	The data will k	be made availat	ble to the commun	ity in 2023	

Thank you! Any questions?

University of Natural Resources and Life Sciences, Vienna Department of Water, Atmosphere and Environment (WAU) Institute of Meteorology and Climatology

herbert.formayer@boku.ac.at 2+43/1/47654-81415 BOKU