

Nicolas Fuchs, Guillermo Yanez, Jessica Thomsen (Fraunhofer ISE) IEWT 2023 TU Wien, 15-17.02.2023

Gefördert durch:

aufgrund eines Beschlusses des Deutschen Bundestages

FernWP: FK7 03FN4015A

Problem

Kommunale Energieplanung

- Eine verpflichtende kommunale Wärmeplanung in DE ist geplant¹
- Unter anderem in Baden-Württemberg ist die Aufgabe schon gesetzlich verpflichtend
- Erste Leitfäden beschreiben den Umfang² in den die Durchführung einer Potentialanalyse gehört

Aber:

- Berechnungshilfen zur Erstellung von Potentialanalysen bisher für Kommunen nicht verfügbar
- Informationen sind für die Ausführung nicht gebündelt genug und die Regulatorik ist z.T. nicht eindeutig oder fehlt
- Wärmepotential Erhebungsmethoden unvollständig für die Anwendung in kommunaler Wärmeplanung

¹ BMWK, DE, 2022

² Umweltministerien aus BW, RLP, NS

Forschungsfragen

Zu einer allgemeinen Wärmequellen Potential Methodik

Welche lokalen Niedertemperatur Wärmequellen stehen einer Stadt, Kommune oder Industrieliegenschaft zur Verfügung?

Wie können Wärmequellen anhand von öffentlichverfügbaren Daten zur Verwendung in der kommunalen Wärmeplanung für Wärmenetze sinnvoll abgeschätzt werden?

Wie ist das techno-ökonomische Potential lokaler Wärmequellen einzuschätzen und auf welche Quellen sollten sich lokale Planer fokussieren?

Fokus Wärmequellen für GWP

Luft-basiert

- Luft
- Abwärme

Wasser-basiert

- Oberflächengewässer (Flüsse, Seen, Ozeane, Reservoirs)
- Abwasser
- Grundwasser, Minen

Erd-basiert

- Oberflächennahe Geothermie
- Tiefengeothermie

Solarthermie **Biomasse**

- Abfälle, Klär-/Biogas
- Feststoffe

Zur Bewertung von lokalen Wärmequellen Potentialen für die kommunale Wärmeplanung

3 Schritte

- 1. Identifikation möglicher Wärmequellen.
- 2. Evaluierung der Quellen anhand von technischen, ökonomischen, regulatorischen und ökologischen Indikatoren.
- Indikatoren bedürfen einer detaillierten open-source Datenerhebung
- Abschätzung der technisch realisierbaren Potentiale unter Limitierungen bzw. Grenzkriterien
- Berücksichtigung der Orts- und Zeitabhängigkeit der Indikatoren
- 3. Abschätzung und Vergleich der Wärmequellen zur Entscheidungshilfe für vertiefende Untersuchung oder Erschließung.

Identifikation

Datenerhebung in geografisch begrenztem Gebiet.

 Supermärkte mit Abwärme Elusswärmegnelle Necka

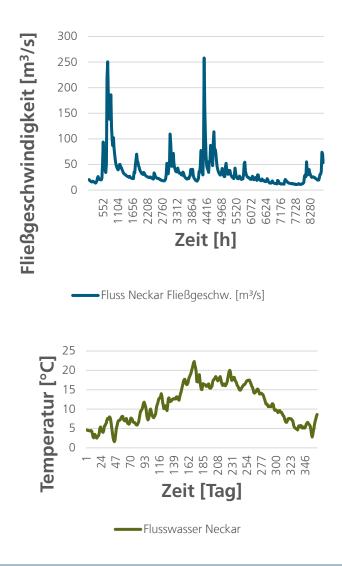
Screening von möglichen Flächen und Standorten.

- Siedlungs-, Wald-, Frei-, Schutz-, Ackerflächen
- Gebäude-, Industriestandorte, Kläranlagen, Minen, Grundwasserbrunnen, Flüsse, Seen, Meer
- Detailrecherche zu Abwärmequellen, Population, Untergrund, etc.

Datenerhebung

- **OSM-Mapping, Online-**Portale, Kataster, Atlanten, **Geoinformations-DB**
- Sammlung relevanter sowie zeitabhängiger Parameter aus Messdaten
- Grenzkriterien anhand von empirischen Studien, VDI Vorgaben, Erfahrungswert und Richtlinien

Indikatoren


П	Technische
ш	Indikatoren

٨	Regulatorische
Δ	Indikatoren

^	Ökonomische
\Diamond	Indikatoren

O Ökologische Indikatoren

Matarauantitu	Groundwater quantity (m³/h)
Water quantity	Surface water volume (m³) or flow rate (l/s)
Water quality	Groundwater quality
Water accessibility	Depth of access of ground water (m)
Ground conditions	Thickness of the quaternary (m)
Ground conditions	Thickness of the pebble layer (m)
Effect of groundwater	Thickness of aquifer (m)
Water temperature	Groundwater temperature (°C)
vvater temperature	Surface water temperature and soil-heat sources temperature (°C)
	Thermal conductivity (W/mK)
Thermal properties of the soil	Thermal diffusivity (m²/s)
	Soil mean temperature (°C)
Globalirradiance	Global irradiance on a fixed plane (W/m²)
Heat source accessibility	Distance grid to the heat extraction point (m)
Area available	Area available (m2)
Euro	pean Water Framework Directive
	er Act (WHG) and State Water Act (WG)
V	/astewater ordinance (ABwV)
Ordinance on Systems	for Handling water- Polluting Substances (AwSV)
Wa	ter Resources Act (WHG / WG)
	Federal Mining Act (BBergG)
	Deposit Act Deposit Act
Heat source related CAPEX	Auxiliary Systems cost per kW (EUR/kW)
Heat Source related CAPEX	Heat Exchanger cost per kW (EUR/kW)
Heat Pump related CAPEX	Heat Pump cost per kW (EUR/kW)
Planning and administrative- related CAPEX	Planning and admin. Cost per kW (EUR/kW)
Operation and maintenance fixed cost – fix OPEX	Fixed costs per kW (EUR/kW/a)
Variable operating costs – var OPEX	Cost of electricity consumed by HP and pumping system (EUR/kWh/a)
Heat intake and deposition	Maximum permissible heat extraction from waterbody, ΔT , (K)
Water consumptive use	Well interference and distance between wells
Water quality	Minimum water quality suitability
Non-consumptive groundwater use	Temperature plum
Depth limit on geothermal use	Geothermal collectors depth limit
Heat transfer substance	Properties of heat transfer substance used
Thermal pollution	Underground temperature change
	Land subsidence
Drilling and grouting related risk	Ground uplift
	Sinkholes formation
Antifreeze leakage	Antifreeze leakage risk
Noise	Noise level

Grenzkriterien und Berechnung

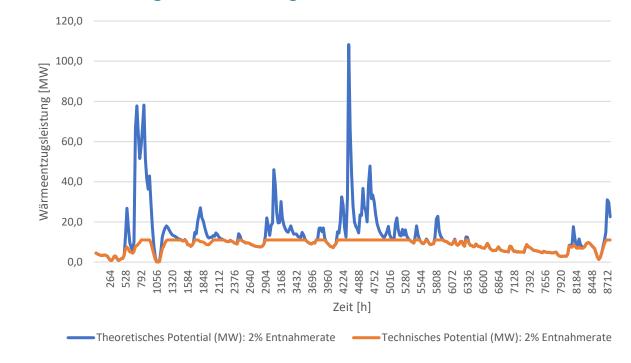
Potentialberechnung

- 1. Theoretisches Potential
- 2. Technisches Potential unter Grenzkriterien
- Je Zeiteinheit [h oder Tag]
- Allg. Berechnung folgt:

$$P = \frac{\Delta T \, V \, \rho_i C_{p_i}}{t}$$

Quellenabhängig, z.T. mit
 Wärmeentzugsleistungen je
 m² vereinfachbar

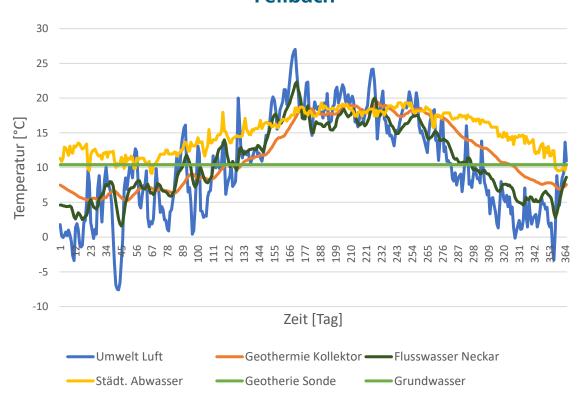
Tabelle: Auszug aus Grenzkriterien


Quelle	Grenzkriterien	Höchstwerte in eig	eigener Berechnung	
Abwasser	Abfluss ≤ 15 l/s, D≥300 m	ΔT (Ablauf/Einleit wasser)	Winter: 1 K	
			Sommer: 1.5 K	
Offene Gewässer	Fläche See < 1km2, Wasserschutzzone	Δ T (extrahiertem Wasser)	5 K	
		Min. Wasser T	2-4 °C (nach WP)	
		ΔT (Gesamtkörper)	1 K (z.T. auch höher)	
Grundwasser	Fließgeschwindigkeit ≤ 5 m3/h, Geschützte Quellen	ΔT (extrahiertem Wasser)	6 K	
		Min. Wasser T.	5 °C	
Agro-geothermische Kollektoren	Fläche ≤ 5000 m2			
Kommerzielle Abwärme	T ≥ 35 °C			

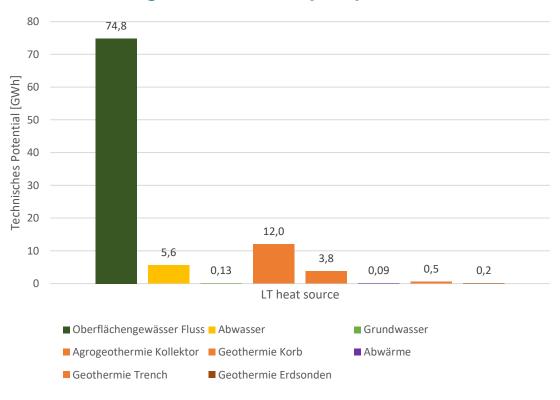
Test der Grenzkriterien an Fließgewässer

Theoretische vs. Technische zeitliche Verfügbarkeit

Verfügbare Leistung am Neckar in Fellbach



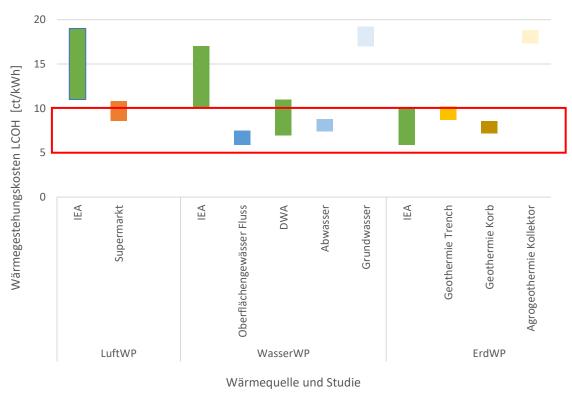
- Bei einer Gesamtstromabkühlung von 0.1 K können aus dem Neckar theoretisch 117 GWh über 8760 h bezogen werden.
- Technisch umsetzbar davon sind ca. 60% (78 GWh) bei 11 MW.
- Eine Abkühlung von 0.1 K entspricht 0,22 bis 0,53 m³/s übers Jahr.



Detailanalyse

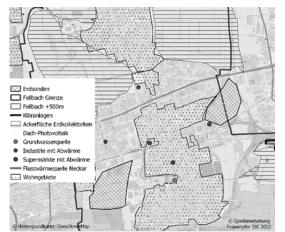
Temperaturverlauf der Niedertemperatur Quellen in Fellbach

Verteilung des Niedertemperatur Potentials für die Anwendung in Großwärmepumpen in Fellbach


Vergleich der techno-ökonomischen Wärmegestehungskosten LCOH

Abschätzung der Wärmegestehungskosten aus technischen Potentialen

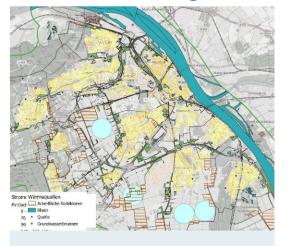
Unter Berücksichtigung:


- der Wärmetauscher und Wärmequellenkosten (skaliert anhand technisch verfügbarer Leistung)
- Lokalen Wärmenetzstruktur
- Lokalen Wärmenachfrage (Abschätzung)
- Weitere Begrenzung
 (Abstände zu Netz und Senke, etc.)

LCOH für Großwärmepumpen mit Strompreis 15-20ct/kWh_{el} nach Quelle in Fellbach vs. IEA

Anwendung der Methodik auf verschiedene Standorte

Höchste technische Potentiale aus der Erhebung



Stadt Fellbach

117 GWh Flusswärme

12,2 GWh oberflächennahe Geothermie

5,6 GWh aus Abwassernutzung

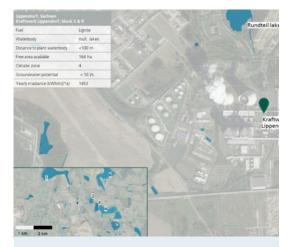
Stadt Mainz

518 GWh Flusswärme

28 GWh Erdkollektoren

28 GWh aus Abwasser

30 GWh Industrieabwärme


56 MWh Grundwasser

Kraftwerk Karlsruhe

351 GWh Hohes Flusswärme Potential (0,2% des Rhein Massenstroms)

5,5 GWh Solarthermie auf verfügbaren Flächen

Kraftwerk Lippendorf

102 GWh Seewärme (6 Seen)

32 GWh Solarthermie auf dem Standort

14,8 GWh oberflächennahe Geothermie über Erdkörbe

Fazit

In Städten, Kommunen und Liegenschaften gibt es erhebliche erneuerbare Wärmepotentiale

Für die kommunale Wärme bzw. Energieplanung müssen diese erhoben werden

Eine Indikatoren basierte Methode ermöglicht eine Abschätzung von Niedertemperaturquellen Potentialen

- auch wenn die Datenverfügbarkeit und Güte limitiert ist
- zur Einordnung der Stadtwerke/Kommunen für die Folgeplanung und Maßnahmenentwicklung
- dabei muss die zeitliche Komponente der Verfügbarkeit und Nachfrage berücksichtigt werden

Ausblick: Überprüfung weiterer und veränderlicher Indikatoren, Anwendung auf weitere Fallstudien

Die Bewertung lokaler erneuerbarer Wärmequellen wird zentraler Bestandteil der kommunalen Wärmeplanung sein. «

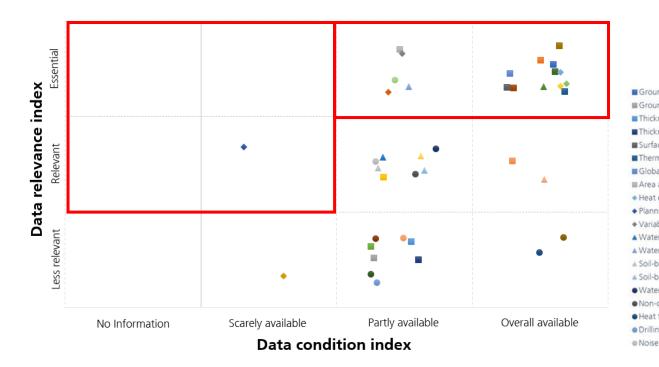
Sebastian Herkel, Abteilungsleitung Fraunhofer ISE

Nicolas Fuchs
Dezentrale Energiesysteme und Märkte
Tel. +49 12 3456-5589
nicolas.fuchs@ise.fraunhofer.de

Gefördert durch:

aufgrund eines Beschlusses des Deutschen Bundestages

FernWP: FKZ 03EN4015A

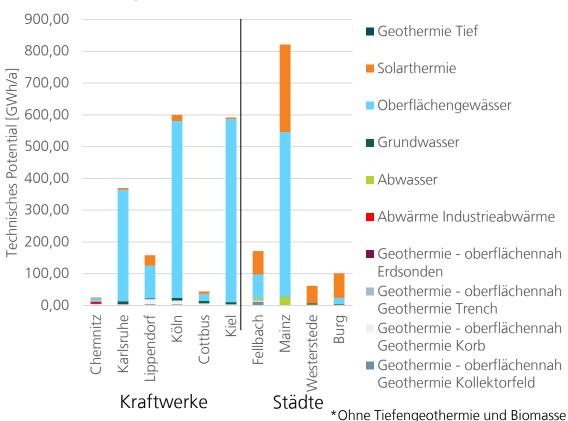

Vielen Dank für Ihre Aufmerksamkeit


Daten Qualität vs. Data Relevanz

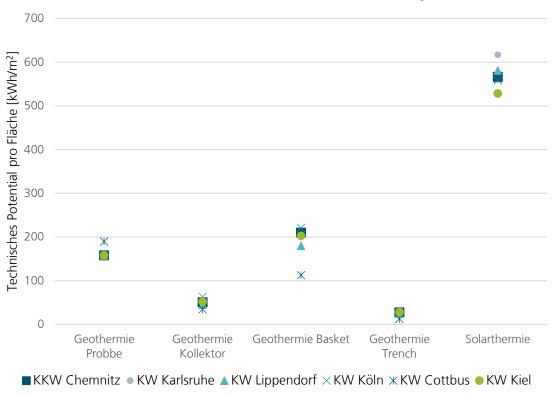
Am Beispiel der Erhebung am Kraftwerk Karlsruhe

Eine gute Datenlage hilft bei der Abschätzung, ist aber nicht garantiert

Quantitative Darstellung zeigt Lücken auf



▲ Water-based use: WHG & WG, thermal extraction and legal permitting



Wärmequellen Potentialvergleich

Verfügbares technisches Wärmepotential

Kohlekraftwerke - Technisches Potential pro Fläche

Zusammenfassung Ökon. Vergleich Fellbach

	Gewässer	Abwas ser	Grund wasser	Geothermie Sonde	Agrothermie Kollektor	Geothermie Korb	Geothermie Trench	Abwärme Supermarket	Summe Gesamt
Theoretisches Potential [GWh]	117.00	7.46	0.14	1.94	239.69	76.40	10.70	0.11	453.72
Technisches Potential [GWh]	74.80	5.59	0.13	0.15	12.00	3.82	0.53	0.09	97.10
LCOH [ct/kwh] bei Preis 20 ct/kWh _{el}	7.5	8.8	19.2	14.0	18.8	8.6	10.2	10.8	
LCOH [ct/kwh] bei Preis 15 ct/kWh _{el}	5.9	7.4	17.0	12.1	17.3	7.2	8.7	8.6	
Vollbenutzungsstd max [h]	8712	8760	8760	2400	1950	1950	1950	8760	
Ergebnis Vorschlag	Höchst nutzbar	nutzba r	Nicht ökon.	Nutzbar aber hohe Auflagen	Nutzbar aber neue Technologie	Möglicherwei se attraktiv (Flächen?)	Möglicherweise attraktiv (Flächen?)	Nutzbar © Fraunhofer ISE, B	ortrand Nkonada

	Indicator	Relevance
Technical Indicators	Groundwater quantity	3
	Surface water volume and/or flow rate	3
	Groundwater quality	1
	Depth of access of groundwater	2
	Thickness of the quaternary	1
	Thickness of the pebble	1
	Thickness of aquifer	1
	Groundwater temperature	3
	Surface water temperature and soil-based heat sources temperature	3
	Thermal conductivity	3
	Thermal diffusivity	3
	Soil mean temperature	3
	Global irradiance on a fixed plane	3
	Heat source accessibility	2
	Area available	3
Economic Indicators	Auxiliary Systems costs	3
	Heat exchanger costs	3
	Heat pump costs	3
	Planning and admin. Costs	2
	P&M fixed costs	3
	Variable operating costs	3
	Demand-related cost based on VDI 2067	1
	Water-based use: European Water Framework Directive, general	
Regulatory Indicators	requirements	2
	Water-based use: WHG & WG, thermal extraction and legal permitting	3
	Water-based use: Wastewater general requirements (ABwV)	2
	Water-based use: Sewage systems discharge, general requirements (AwSV)	2
	Soil-based use: Legal permiting on WHG & WG	2
	Soil-based use: Legal permiting on BBergG	2
	Soil-based use: Notice and reporting on Deposit Act	2
Environmental indicators	Heat intake and deposition	3
in in a marca to is	Water consumptive use	2
	Water quality	1
	Non-consumptive groundwater use	2
	Depth limit on geothermal use	1
	Heat transfer substance use	1
	Thermal pollution	1
	Drilling and grouting related risk	1
	Antifreeze leakage	1
	Noise	2

Auxiliary Systems cost per kW (EUR/kW)	Piping system Self-cleaning intake screen Water pump Auto-rising strainer (wastewater) Drilling Grounting	12-30 EUR/kW 48 EUR/kW 48-61 EUR/kW: Pump size range 50 - 1000 kW, 12% of HP cost 37 EUR/kW 498-530 EUR/kW 100 EUR/kW
Heat Exchanger cost per kW (EUR/kW)	Heat exchanger and installation Heat recovery unit (Air-based)	198-288 EUR/kW: Plate HEX, stainless steel 750 EUR/kW: Geothermal trench incl. Installation and planning 1745 EUR/kW: Geothermal basket 1450 EUR/kW: Geothermal collector 560 EUR/kW Heat recovery unit
Heat Pump cost per kW (EUR/kW)	Heat pump unit and installation	396 EUR/kW: 50 kW size 400 EUR/kW: 100 kW size 510 EUR/kW: 1000 kW size