

Modelling of hydrogen production technologies in an integrated energy system at different carbon constraints

Stefan BALLOK^{1,2}, Marco COMETTO¹, Aliki van HEEK¹, Eileen LANGEGGER²

¹IAEA, ²TU Wien

Introduction

- Deep decarbonisation
- Increase of electricity demand
 - Electrification of sectors like energy, transportation and industrial processes

Hydrogen

- \rightarrow For hard to abate sectors
- \rightarrow Flexibility for systems with high VRE share

Research questions

Power sector

• Impact of carbon constraint?

Introducing hydrogen

- 1. How is hydrogen produced at different carbon constraints?
- 2. In which way does the hydrogen system change the power generation mix?
- 3. Under which conditions is hydrogen burnt for electricity?

Methodology – System & Model

System

- Single region
- Greenfield approach for 2050
 - Existing capacities are not taken into account
 - Only brownfield capacities: hydroelectric plants
- One year with hourly resolution
 - Hourly data from real countries
- "Copper plate" approach

Model

- PowerInvest
 - Linear

		Country "France"	Country "UK"
El. demand [TWh]		500	
H ₂ demand [TWh]		0, 100, 250	
Load factors	solar PV	15%	10%
	wind on- shore	24%	28%
	wind off- shore	41%	44%
Brownfield capacities [GW]	pumps	3	3
	dams	10	-
	run-of-the- river	12	-

Levelised cost of electricity (LCOE)

- Method to compare different electricity generators
- All discounted costs over the lifetime divided by a discounted sum of produced electricity
- Economic data from IEA WEO 2022 Ed. (estimates for 2050)

Observations

- Coal has the lowest LCOE
- Renewables have similarly low LCOE
- Without fuel costs: nuclear has
 the highest LCOE

LCOE (left: "France", right: "UK")

Results CASES WITHOUT HYDROGEN

Electricity Generation

600

500

400

- Electricity demand of 500 TWh
- "France" vs. "UK"
- Six carbon constraints

Trends

- Coal at non-binding carbon constraint
- Shift to gas turbines at moderate carbon constraint
- Highest renewables share at 100 g(CO₂)/kWh
- Increase of nuclear at stringent carbon constraints
- Valid for both countries

Electricity generation (H₂ = 0 TWh, CCS available)

El. generation cost & shadow carbon price

Electricity generation cost [\$/MWh]

- Increases as carbon constraints
 becomes more stringent
- Model will always fully utilize the carbon constraint

Shadow carbon price [\$/ton]

- Results implicitly from imposing a carbon constraint
- When carbon constraint reached, more expensive technologies are used → increase of elec. price
- Increases over-proportionally when approaching 0 g(CO₂)/kWh
- Reducing carbon emissions from the energy system becomes increasingly more expensive

Results CASES WITH HYDROGEN

Hydrogen production

Trends

- Steam methane reforming (SMR) at non-binding carbon constraint
- Shift to SMR with CCS at moderate carbon constraint
- Electrolysis gains momentum and shares mix with SMR with CCS at stringent carbon constraint

Hydrogen to electricity

Only at most stringent carbon constraint

Electricity generation - comparison

Trends

- Without CCS: electrolysis is the leading hydrogen production technology at stringent carbon constraints
 - More total electricity generation
- Higher renewables share
 - Due to additional flexiblity provided by electrolysis
- Lower use of gas turbines
- Less nuclear at stringent carbon constraint
- Valid for both "countries"

Electricity generation ("France", H₂ = 250 TWh, no CCS)

Carbon Constraint [g(CO₂)/kWh]

Results SENSITIVITY CASES

High gas price – hydrogen production

 Increase of the gas price from 9* to 12 \$/MMBTU

Trends

- Steam methane reforming becomes less economic (both versions)
- Electrolysis increases across all carbon constraints
- Total hydrogen production decreases because hydrogen to electricity drops back

Carbon Constraint [g(CO₂)/kWh]

Electrolysers	Steam Methane Reforming	SMR with CCS	H2 turbines
---------------	-------------------------	--------------	-------------

* Source: WEO (IEA, 2022)

High gas price – electricity generation

Trends

- Total electricity generation increases as electrolysis gains significance
- Gas turbines decrease across all carbon constraints
- Coal even at 100 g(CO₂)/kWh
- Nuclear increases at moderate carbon constraints
- Renewables share increases up to 50 g(CO₂)/kWh
- Flexibility from electrolysis

Low nuclear cost – electricity generation

- Construction costs from 4500* to 4000 \$/kW
- Fixed operation and maintenance from 100 to 80 \$/kW

Trends

- Significant increase of nuclear across all carbon constraints
- Decrease of gas turbines
- Decrease of renewables share
- Coal even enters at 100 g(CO₂)/kWh

Electricity generation ("France", H₂ = 100 TWh, CCS available)

* Source: WEO (IEA, 2022)

Low nuclear cost – hydrogen production

Trends

- Because of cheap electricity from nuclear:
 - Increase of electrolysis
 - Decrease of SMR

Hydrogen to electricity

- Because of lower renewables
 share
 - Less flexibility is required
 - Therefore, decrease of hydrogen to electricity

Carbon Constraint [g(CO₂)/kWh]

CONCLUSION

Conclusion

1. How is hydrogen produced at different carbon constraints?

Conclusion

2. In which way does the hydrogen system change the power generation mix?

- Hydrogen system (electrolysis) offers additional flexibility
- Increase of renewables share across all carbon constraints
- Decrease of nuclear at stringent carbon constraints

3. Under which conditions is hydrogen burnt for electricity?

- Below 20 g(CO₂)/kWh
- Hydrogen burning provides additional flexibility
- Because of high energy losses only used as peaking technology
- OCGT (H_2) dominates over CCGT (H_2)

Thank you for your attention