

The influence of diverse framework conditions on the economics of energy communities in European countries

IEWT 2023, 16th February 2023, Vienna

Christoph Domenig¹, Julian Hermann¹, Fabian Scheller², Philipp Andreas Gunkel³, Claire Bergaentzlé³, Russell McKenna^{1,4}

¹ Chair of Energy Systems Analysis, Institute of Energy and Process Engineering, Department of Mechanical and Process Engineering, ETH Zurich, Switzerland

² Faculty of Business and Engineering, University of Applied Sciences Würzburg-Schweinefurt (THWS), Germany

³ Energy Economics and System Analysis, DTU Management, Technical University of Denmark, Kongens Lyngby, Denmark

⁴ Laboratory for Energy System Analysis, Paul Scherrer Institute, Switzerland

Split incentives in multi-family buildings (MFBs) represent a problem for both climate change and energy poverty

MFBs (~ 50% of EU residential buildings) show large potential for energy efficient renovation and lowcarbon building energy systems (BES)

Split incentives in renter-occupied MFB represent a significant obstacle

Leaving renters potentially traped in energy poverty Forming collective self-consumption (CSC) communities in MFBs could represent a promising solution

ETH zürich EHS = Electric Heating System

Research Question

1. Can CSC communities support the diffusion of low-carbon BES* in MFBs while helping to alleviate energy poverty?

CSC policy frameworks show large differences in European countries

Research Question 1. Can CSC communities support the diffusion of low-carbon BES* in MFBs while helping to alleviate energy poverty?

2. What impact do different European CSC policies have on these goals?

The policy frameworks are integrated into a MILP model that optimizes the design and operation of a CSC community in an MFB for one year

The model maximizes the annual income of the building owner

Maximize:

Total Annual Income of Owner =

- Annualized Active Retrofit Costs
- Annualized Passive Retrofit Costs
- PV and Battery O&M Costs
- + Increased Rental Income
- + PV Cashflows* +

PV Renters, PV Heating, PV Export

Subject to:

Binary Technology and Storage Investment
Binary Passive Retrofit Investment
Minimum HP Retrofit Constraint
Technology and Storage Models
Demand Node Balance
Max/Min Capacity and Flow Constraints
Hot Water Tank Constraints
Rent Increase Constraints

The BAU case comprises the operation of the unrenovated MFB without forming an energy community

Rent increase <= 8% of value active/passive heating upgrades

Rent increase + new heating costs <= 90% of BAU heating costs

The three different CSC policies are tested on a level playing field under varying electricity tax scenarios

Category	Input Parameter	Value	
	Space Heating Demand	high	
Building	Heating System	low efficiency boiler	
	Size	8 apartments	
	Location/Climate	СН	
Financial	Investment	DE	
FINANCIAI	Discount Rate	4 %	
	Wholesale Energy Price	Ø 10.6 ct/kWh	
Cost of Electricity	Grid Tariff	10.1* and 5.0* ct/kWh	
LICOTION			

+ Level playing field to isolate policy effects

- Level playing field does not reflect the specific boundary conditions in every country

Results

High passive retrofitting costs limit owner value in all scenarios

Larger CSC community benefits lead to lost electricity grid tariff revenue

ETH zürich *Only electricity, does not include lost gas tax/tariff revenue

Take-home messages

a) CSC communities in MFBs can ...

- 1... support the diffusion of low-carbon BES policy levers: e-grid tariff / e-tax exemptions and subsidies
- 2... help alleviate energy poverty by reducing renters utility expenses policy levers: lower grid e-costs and 50/50 CSC electricity profit

b) Renovation costs pose a significant barrier to 1+2

c) Impact of different CSC policies on 1 + 2 ?

'There is no free lunch': Larger benefit for renter and owners -> higher burden for e-tax and e-grid tariff budgets

Appendix

Electricity Tax Scenarios

Example of hourly COP taken from Pavičević et al. 2017

Modelling Complexity Analysis The three different CSC policies are tested on a level playing field under varying electricity tax scenarios

Category	CategoryInput ParameterValue	
	Space Heating Demand	high
Building	Heating System	low efficiency boiler
	Building Size	8 apartments
Financial	Investment Costs	DE
Financial	Discount Rate	4 %
Cost of Electricity	Wholesale Energy Price Ø 10.6 ct/kWh	
	Grid Tariff	10.1* and 5.0* ct/kWh
	Electricity Tax Scenario	low-high
Othor	CSC Policy	DE-FR-CH
Uther	Climate Data	СН
*Values for 2 different electricity consumption bands		Fixed Scenario-specific

Goals Asses whether CSC communities can support the <u>diffusion of low-carbon BES</u> in MFBs while helping to alleviate energy poverty

2 Identify <u>efficiency</u> of different European CSC policies at achieving Two research fields looking at BES investment in MFBs from a different perspective

The BAU case comprises the operation of the unrenovated building without forming an energy community

Rent increase <= 8% of value active/passive heating upgrades Rent increase + new heating costs <= 90% of 000 **BAU** heating costs 6 **BAU** Assumptions Cost of Fossil Fuel: 7 ct/kWh Cost of Electricity: country-specific Â Annual SH Demand: unrenovated case Owner Income: (rent) Renter Expenses: (rent) + utilities

Energy Policy Framework Comparison

	France	Switzerland	Germany
Participation	max. 2km* radius; public grid usage allowed	same building or connected properties	same building or apartment block
Governance	definition of legal person required	part of rental law	landlord is energy supplier
Capacity Constraints	< 3MW	> 10% grid connection power	< 100 kW*
Price PV electricity	-	Owner's profit max. 50% between original CoE and solar energy price	max. 90% of original CoE
Price grid electricity	payed directly to utility (H4)	payed to landlord, no markup (H6)	payed to landlord, with markup (H6)
Taxes	full grid tariffs and taxes	no grid tariffs and taxes except VAT	no grid tariffs and taxes except VAT + subsidy

Cost of Elecitricity Components 2021

	Country	Consumption Band (kWh)	Wholesale Energy Price	Grid Tariffs	Taxes (incl. VAT)	Total	
Germar		1.000 - 2.500	9.6	9.4	17.1	36.0	
	Germany	2.500 - 5.000	9.6	7.8	16.6	34.0	
		>15.000	9.6	4.9	15.3	29.8	
France		1.000 - 2.500	10.9	8.0	7.3	26.2	
	France	2.500 - 5.000	10.9	5.9	7.2	24.0	
		>15.000	10.9	4.3	6.8	21.9	
Switzerland		1.800	11.4	13.0	5.1	29.7	
	Switzerland	4.500	11.4	9.5	5.0	25.9	
		25.000	11.4	6.0	4.6	22.0	

Technology and Retrofit Costs

Technologies	Fixed Costs (€)	Variable Costs	OPEX	Efficiency	Self-Discharge Losses	Max Charge	Max Size	Lifetime (years)
Solar PV	1000	190 €/m2	0.01	0.17	-	-	250 m2	20
Solar Thermal	4000	350 €/m2	0.01	0.7	-	-	250 m2	20
ASHP	5000	600 €/kWth	0.02	3.2/2.1	-	-	30 kW	20
GSHP	-	-	-	-	-	-	-	-
Pellet Boiler	10000	300 €/kWth	0.03	0.9	-	-	30 kW	20
Electric Coil	0	60 €/kWth	0.01	1	-	-	30 kW	30
Buffer Tank	0	45 €/kWh	0.01	0.99*	0.006	200 kW	200 kWh	25
Battery	1000	250 €/kWh	0.01	0.95*	0.0001	100 kW	200 kWh	20

*charge/discharge efficiency

Reference	Usual	Advanced
Floor Area	Refurbrishment	Refurbrishment
469 m2	93.000€	117.000€

Input Data Sources

Input	Sources
Technology Data	PV: Brauer et al. 2022, Other: Kotzur 2018
Retrofit Costs	Based on Tabula and IWU Report
Electricity Prices	Eurostat, ElCom, ENTSOE
Electricity Demand	Gunkel et al. 2023
Temperature Data	PVGIS
Building Data	Tabula
Hot Water Demand	Based on HotMaps D2.3 WP2 Report
Solar Irradiation	PVGIS

Heat Demand for Building Scenarios

Source: Tabula Webtool

Three passive retrofit levels are considered simultaneously in the model

Adapted from Tabula Webtool

ETH zürich

Demand Profiles

PPP Index Accross Case Study Countries

2021 PPP Index

Source: Purchasing power parities (PPPs), price level indices and real expenditures for ESA 2010 aggregates, Eurostat, 2023.

ETH zürich

Objective Function

$$\begin{split} max. \ TAI_{owner} = \\ &- \sum_{g = i \cup k} (\mathbf{Cap}_g * c_g^{var} + \mathbf{X}_g * c_g^{fix}) * a_g \\ &- \sum_{y = PV, BAT} (\mathbf{Cap}_y * c_y^{var} + \mathbf{X}_y * c_y^{fix}) * c_y^{opex} \\ &- \sum_{r} \mathbf{X}_r * c_r^{retro} * a_r \\ &+ \sum_{i,j,t} \mathbf{E}_{i,j,t}^{tech} * C_{i,j,t}^{tech,own} + \sum_{k,l,t} \mathbf{E}_{k,l,t}^{sto} * C_{k,l,t}^{sto,own} + \sum_{m,n,t} \mathbf{E}_{m,n,t}^{imprt} * C_{m,n,t}^{imprt,own} \\ &+ \mathbf{R} \end{split}$$

i = [Technologies], j = [Technologies, Storages, Demand Types, Electricity Export]k = [Storages], l = [Technologies, Demand Types]m = [Energy Carriers], n = [Technologies, Demand Types]r = [Retrofit Scenarios]d = [Demand Types]

Various Constraints

Design Variable Constraints	Min and Max Energy Flow Constraints:
$\mathbf{X}_g \in \{0,1\} \forall \ g \ = \ i \ \cup \ k$	$0 \leq \mathbf{E}_{i,j,t}^{tech} , \ \mathbf{E}_{k,l,t}^{sto} , \ \mathbf{E}_{m,n,t}^{imprt} \forall \ i,j,k,l,m,n,t$
$\mathbf{X}_{TES_{dhw}} = 1$	$\sum_{j} \mathbf{E}_{i,j,t}^{tech} \leq \mathbf{Cap}_{i} * \Delta \tau \forall t, \{i \mid i_{in} \neq \mathrm{sun}\}$
$\mathbf{X}_r \in \{0, 1\} \forall \ r$	$\sum_{i} \mathbf{E}_{i,k,t}^{tech} \leq \mathbf{Cap}_{k} * \delta_{k}^{c} \forall \ k, t$
$\sum_r \mathbf{X}_r = 1$	$\sum_{l} \mathbf{E}_{k,l,t}^{sto} \leq \mathbf{Cap}_{k} * \delta_{k}^{d} \forall \ k, t$
$X_{HP} >= X_{usual} + X_{advanced}$	$\sum_{n} \mathbf{E}_{m,n,t}^{imprt} \le Cap_{m}^{max} * \Delta \tau \forall \ m, t$
$0 \leq \mathbf{Cap}_g \leq \mathbf{X}_g * Cap_g^{max} \forall \ g \ = \ i$	$\bigcup \mathbf{k} \qquad \mathbf{E}_{i,elxp,t}^{tecn} \le Cap_{elxp}^{max} \ast \Delta \tau \forall i,t$

Initiliaze Zeros in Energy Flow Matrix

Setting Nonphysical Energy Flows to Zero:

$$\mathbf{E}_{i,j,t}^{tech} = 0 \quad \forall t \;, \{i, j/\{elxp\} \mid i_{out} \cap j_{in} = 0\}$$

$$\mathbf{E}_{i,elxp,t}^{tech} = 0 \quad \forall t \;, \{i \mid i_{out} \cap elxp = 0\}$$

$$\mathbf{E}_{i,dhw,t}^{tech} = 0 \quad \forall i, t$$

$$\mathbf{E}_{k,l,t}^{sto} = 0 \quad \forall t \;, \{k, l \mid k_{out} \cap l_{in} = 0\}$$

$$\mathbf{E}_{m,n,t}^{imprt} = 0 \quad \forall t \;, \{m, n \mid m_{out} \cap n_{in} = 0\}$$

Technology Models

$$\begin{array}{l} \hline \text{Technology Node Balance:} \\ W_{i,t} = \sum_{j} (\frac{1}{\eta_{i,d}} * \mathbf{E}_{i,j,t}^{tech} \text{ if } i_{out} \cap j_{in} \neq 0) \quad \forall i,t \\ \\ I_{t}^{DNI} * \Delta \tau * \mathbf{Cap}_{i} = W_{i,t} \quad \forall t \;, \{i \mid i_{in} = \mathrm{sun}\} \\ \\ \sum_{m} \mathbf{E}_{m,i,t}^{imprt} + \sum_{k} \mathbf{E}_{k,i,t}^{sto} + \sum_{v = \forall i} \mathbf{E}_{v,i,t}^{tech} = W_{i,t} \quad \forall t \;, \{i \mid i_{in} \neq \mathrm{sun}\} \end{array}$$

Storage Model and Demand = Supply

$$\begin{split} 0 &\leq \mathbf{S}_{k,t} \leq \mathbf{Cap}_k \ \ \forall k,t \\ \mathbf{S}_{k,1} &= (\mathbf{X}_k * S_k^0) * (1 - \lambda_k) + \eta_k^c * \sum_i \mathbf{E}_{i,k,t}^{tech} + \frac{1}{\eta_k^d} * \sum_l \mathbf{E}_{k,l,t}^{sto} \ \ \forall k \\ \mathbf{S}_{k,t} &= \mathbf{S}_{k,t-1} * (1 - \lambda_k) + \eta_k^c * \sum_i \mathbf{E}_{i,k,t}^{tech} + \frac{1}{\eta_k^d} * \sum_l \mathbf{E}_{k,l,t}^{sto} \ \ \forall k, \{t \mid 1 < t \leq T\} \\ \mathbf{S}_{k,T} &= \mathbf{X}_k * S_k^0 \ \ \forall k \end{split}$$

Rent Increase Constraints

$$\begin{split} \underline{\text{Rent Increase Constraint:}} \\ \mathbf{R} &<= 0.08 * (\sum_{h} \mathbf{Cap}_{h} * c_{h}^{var} + \mathbf{X}_{h} * c_{h}^{fix} + \sum_{r} \mathbf{X}_{r} * c_{r}^{retro}) \\ \mathbf{R} &<= 0.9 * \left((\dot{Q}_{bau,t}^{sh} + \dot{Q}_{bau,t}^{dhw}) * \Delta \tau * \frac{c_{bau}^{sh}}{\eta_{bau}^{sh}} + (Cap_{bau} * c_{bau}^{var} + X_{bau} * c_{bau}^{fix}) * c_{bau}^{opex} \right) \\ &- \sum_{h,t} \left(\sum_{i} \mathbf{E}_{i,h,t}^{tech} * C_{i,h,t}^{tech,rent} + \sum_{k} \mathbf{E}_{k,h,t}^{sto,rent} * C_{k,h,t}^{sto,rent} + \sum_{m} \mathbf{E}_{m,h,t}^{imprt} * C_{m,h,t}^{imprt,rent} \right) \\ &- \sum_{h} (\mathbf{Cap}_{h} * c_{h}^{var} + \mathbf{X}_{h} * c_{h}^{fix}) * c_{h}^{opex} \end{split}$$

EU Renovation Wave Goals

Renovation Wave Priorities

Tackling energy poverty and worst-performing buildings

Renovation of public buildings

Decarbonisation of heating and cooling

