scch { }

scch { software competence center	
hagenberg	
•	
· · ·	

Predictive Modeling for Flexibility Load Forecasting in Prosumer Communities IEWT 2023, Wien 16-02-2023

Georgios Chasparis

www.scch.at georgios.chasparis@scch.at

- Introduction
 - Software Competence Center Hagenberg (SCCH)
 - Serve-U FFG project
 - Short Term Load Forecasting (STLF)
- Standard Forecasting Models
- Persistence-based Regressive Models
- Evaluation to Energy Communities
- Evaluation when Incorporating Weather Data

Søftware Competence Center Hagenberg

- Non-profit institution for Data Science & Software Science
- Founded by the Johannes Kepler University Linz in 1999
- ~ 100 Employees (over 120 with partners)
- ~ 8.5 Mi Euro Revenue
- COMET competence center

Introduction: Serve-U Project

- Serve-U project (FFG):
 - Web: <u>https://serve-u.at</u>
 - User-centered energy service platform
 - Enable energy communities to access forecasts
 - Influence energy-optimized utilization options

Introduction: Short Term Load Forecasting

- Short Term Load Forecasting (STLF):
 - Needed for energy-utilization optimal decisions
 - Day-ahead (DA) electricity load forecasting
 - 15-min granularity of energy data
 - Several model possibilities (black-box, naive persistence, regression-based models)

Black-box standard Models

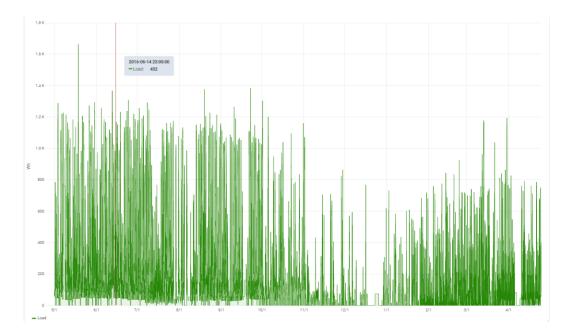
- Standard averaging techniques [Haben et al., 2014; Kychkin, 2016]
- Auto-regressive models, e.g., AR/ARMA/ARIMA/SARIMA [Haben et al., 2019; Clements et al., 2016]
- Exponential smoothing approach, e.g., Holt-Winters method [Alfares and Mohammad, 2002]
- Models specifically tailored for STLF
 - Including influence data, e.g., weather [Cancelo, 2008]
 - Regression analysis, as a tool for estimating the relationships among variables [Hong et al., 2010]
 - A set of relevant features that can be extracted from the time series [Christ et al., 2017-2018]
 - Advanced models like artificial neural networks, fuzzy logic and knowledge-based models [*Chitsaz et al.,* 2015; *Hippert, 2005; Alfares, 2002*]

Related work (cont)

- Optimally combining models for STLF
 - Wavelet (trigonometric regressions sensitive to seasonality effects)-ARMAX-Winters Model [Chen et al., 2004]
 - Online Sequential Extreme Learning Machine for ensemble learning [Ye and Dai, 2018]
 - Two-level Seasonal Autoregressive model (TLSAR) that combines calculations for potential and irregular load [Soares and Medeiros, 2008]
 - Dummy-Adjusted SARIMA with day type variables [Soares and Medeiros, 2008]
 - Combinations of naive, smoothing and regression models [Hippert et al., 2005]
 - Neural networks

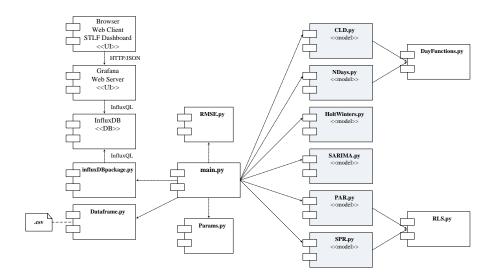
Software Architecture

• Period of measurements = 15min (96 measurements/day)



Electricity Consumption Snapshot

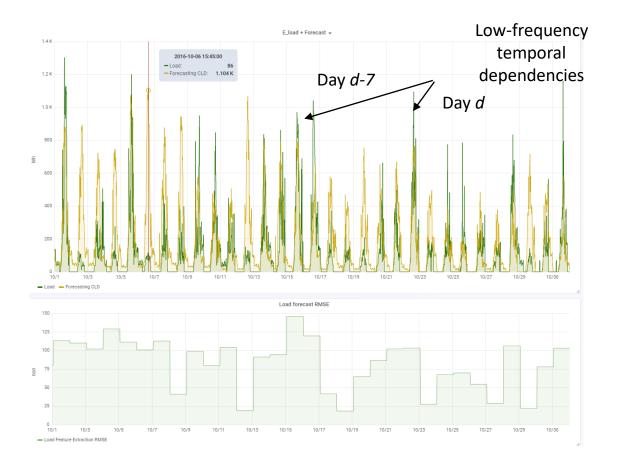
- Time-series database InfluxDB
- Visualization tool Grafana
- Data Analytics Python



Software Architecture

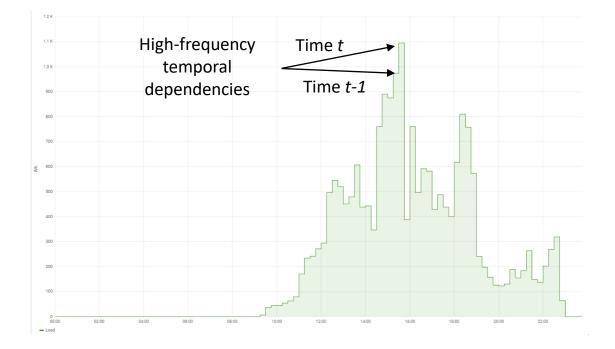
Standard Models – Persistence Models

- "N-days" persistence model (*N-days*)
 - It takes an average of the load of N previous days and at exactly the same time
- "N-same-days" persistence model (*N-same-days*)
 - It tries to exploit residents' schedule
 - Average consumption at the same time on N previous same days



Standard Models – Regression-based Models

- Auto-regressive Model (AR)
 - Captures temporal dependencies of the load within the same day
 - Linear combination of the load at previous time instances

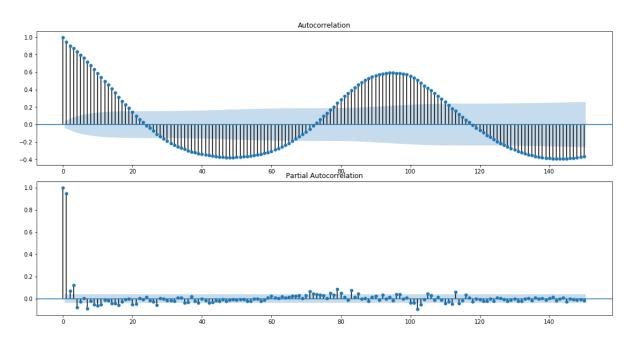


Electricity consumption for one building over a time period of one day (25 April 2017)

10

Standard Models – Regression-based Models (cont.)

- Auto-regressive Model (AR)
 - Captures temporal dependencies of the load within the same day
 - Linear combination of the load at previous time instances
- Season auto-regressive integrated moving-average model (SARIMA)
 - It is based on ARIMA model (auto-regressive, integration, moving-average part)
 - Captures stationarity in the process through the Moving Average (MA) part
 - Captures trends (in the form of differences in time) through the Integration (I) part
 - Captures seasonality (day-season or week-season) through the (S) part

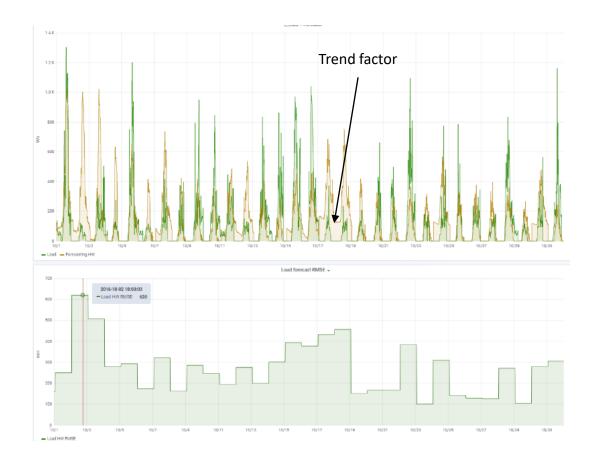


Standard Models – Exponential Smoothing

- Holt-Winters model (HW)
 - Captures repeated fluctuations as well as temporal trends
 - Seasonal component is characterized by the length of the season (here, 1 week)

 $\hat{y}_d^{\mathsf{HW}}(t) = L(t-n) + nP(t-n) + S(t-T)$

- L : level component (baseline)
- P : trend component (low-pass filter)
- S : season component



Persistence-based Auto-Regressive Model (PAR)

- Persistence-based auto-regressive model (PAR):
 - Persistence models capture low-frequency temporal dependencies (over several days)
 - Auto-regressive models capture high-frequency temporal dependencies (within the same day)
 - Combination of two types of models

$$\hat{y}_d^{\text{PAR}}(t|a_1,\ldots,a_j,b_0) = a_1 \cdot \hat{y}_d^{\text{AR}}(t-1) + \cdots + a_j \cdot \hat{y}_d^{\text{AR}}(t-j) + b_0 \cdot \hat{y}_d^{\text{PM}}(t)$$

• In the spirit of "Expert-based forecasting methods" of [Cesa-Bianchi and Lugosi, 2006]

Persistence-based Auto-Regressive Model with Weather Data (PAR-W)

• Persistence-based auto-regressive model (PAR):

- Persistence models capture low-frequency temporal dependencies (over several days)
- Auto-regressive models capture high-frequency temporal dependencies (within the same day)
- Combination of two types of models

$$\hat{y}_d^{\mathsf{PAR}}(t|a_1,\ldots,a_j,b_0) = a_1 \cdot \hat{y}_d^{\mathsf{AR}}(t-1) + \cdots + a_j \cdot \hat{y}_d^{\mathsf{AR}}(t-j) + b_0 \cdot \hat{y}_d^{\mathsf{PM}}(t)$$

- In the spirit of "Expert-based forecasting methods" of [Cesa-Bianchi and Lugosi, 2006]
- Additional features were included to capture the weather conditions

A. Kychkin, G. Chasparis, "Feature and model selection for day-ahead electricity-load forecasting in residential buildings," *Energy and Buildings*, vol 249, 2021. N. Cesa-Bianchi, G. Lugosi, Prediction, Learning, and Games, Cambridge University Press, New York, NY, USA, 2006.

Seasonal Persistence-based Regressive Model (SPR)

- Exploiting causal effects specific to user-behavior
 - e.g., users consume about the same energy every morning or in certain periods
 - e.g., users consume about the same energy every day
- Introduce Additional features:
 - Total energy load within the last hours
 - Low/High energy consumption flag
 - Rolling-sum of electricity load
 - ...
- In other words,
 - we reduce the level of uncertainty in the user-behavior
 - we try to exploit patterns in user behavior

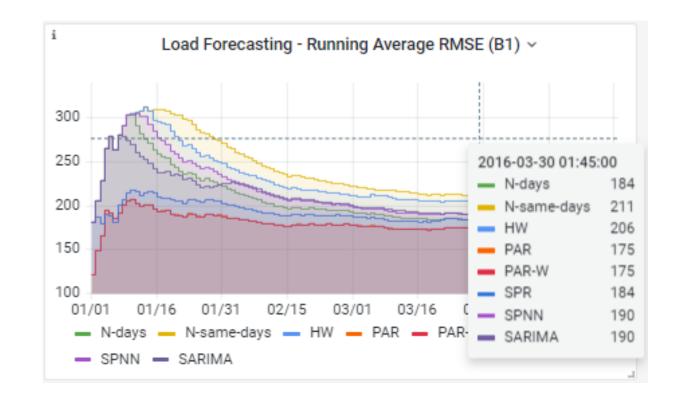
A. Kychkin, G. Chasparis, "Feature and model selection for day-ahead electricity-load forecasting in residential buildings," Energy and Buildings, vol 249, 2021.

$$\begin{split} \hat{y}_{d}^{\text{SPR}}(t|a_{0},a_{1},\ldots,a_{14}) &= a_{0} \cdot f_{d} + a_{1} \cdot y_{d-1}(t) + a_{2} \cdot y_{d-7}(t) + a_{3} \\ &\quad \cdot y_{rs,d-1}(t) + a_{4} \cdot y_{rs,d-7}(t) + a_{5} \cdot y_{h,d-1}(t) \\ &\quad + a_{6} \cdot y_{h,d-7}(t) + a_{7} \cdot y_{d,d-1}(t) + a_{8} \\ &\quad \cdot y_{d,d-7}(t) + a_{9} \cdot y_{dh,d-1}(t) + a_{10} \\ &\quad \cdot y_{dh,d-7}(t) + a_{11} \cdot y_{\text{low},d-1}(t) + a_{12} \\ &\quad \cdot y_{\text{low},d-7}(t) + a_{13} \cdot y_{\text{high},d-1}(t) + a_{14} \\ &\quad \cdot y_{\text{high},d-7}(t). \end{split}$$

scch {

Performance on Individual Buildings

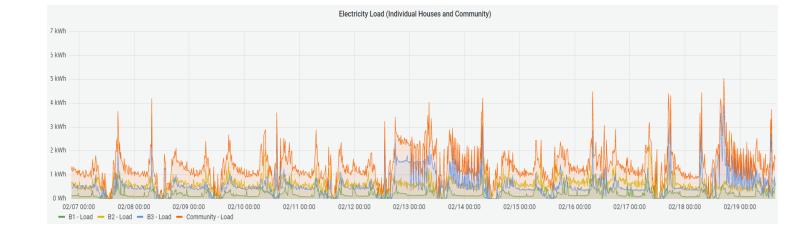
- Standard models may not perform better than naive persistence models
 - e.g., N-days vs HW / SARIMA
- Combined models (PAR) improve performance over naive persistence models
- Weather data may very slightly improve forecasts
 - see, e.g., PAR vs PAR-W
- Accuracy vs computational complexity
 - e.g., SARIMA vs PAR

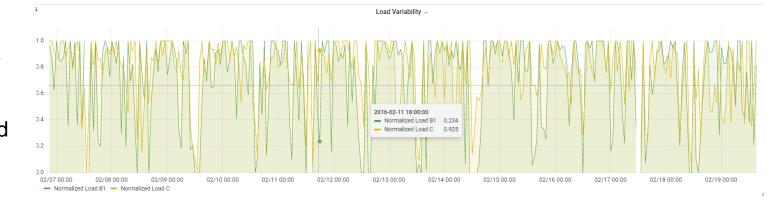


scch { }

Community Load Forecasting

- Investigate forecast RMSE in energy communities
 - Exploit averaging effects for better load forecasting
 - Community load should exhibit lower variability (smaller size of load picks)
 - Community RMSE should be lower than average RMSE
- Experiments
 - Tests were performed in a community of 3 buildings in Upper Austria
 - Individual buildings demonstrate larger relative load variation than community load





18

Community Load Forecasting – Performance

• Remarks:

- Relative RMSE for a community of 3 buildings
- Better performance was observed by PAR and PAR-W models
- SPR models also improved in comparison to naive persistence models
- SARIMA is not able to improve in comparison to N days naive persistence model

	Duration	Feb 2016	July 2016	Dec 2016	2016
)	N-same-days	0,808	0,717	0,521	0,690
k	N-days	0,636	0,621	0,446	0,586
	HW	0,751	0,755	0,532	0,694
naive to N-	SARIMA	0,694	0,644	0,455	0,616
	PAR	0,461	0,579	0,429	0,488
	PAR-W	0,460	0,579	0,429	0,487
	SPR	0,505	0,609	0,450	0,526
	SPNN	0,762	0,666	0,466	0,646

Community Load Forecasting – Performance (cont)

Poor performance in individual building DA forecasts is significantly reduced in the community

• For example, for the PAR-W model, individual buildings forecasts (rRMSE=1.050, 0.433, 0.914)

are worse on average than the community forecasts (rRMSE=0.490)

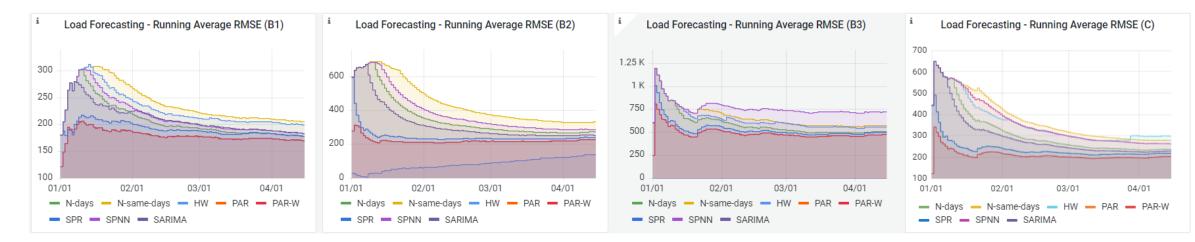
Optimization at the community level can exploit such robustness!

• Remarks:

forecasts

scch { }

i	L: PAR-W (C)	i L: SPR (C)
	0.490	0.551
i	L: PAR-W (B1)	ⁱ L: SPR (B1) ~
	1.05	1.12
i	L: PAR-W (B2)	i L: SPR (B2)
	0.433	0.477
i	L: PAR-W (B2)	i L: SPR (B3)
	0.914	0.983



19

Conclusions

- Evaluation of day-ahead load forecasting models
 - Evaluated performance of basic and combined models to load forecasting
 - Persistence-based Regression Models (PAR, SPR) provided the best performance
 - PAR and SPR also exhibit computational efficiency
 - · Incorporating of weather data slightly improved predictions
 - Community forecasting exhibits robustness to individual bad forecasts
- Causal-inference-based load-forecasting
 - PAR and SPR further exploit causal effects in user-behavior
 - Causality needs to be exploited further, especially in hourly forecasts

Georgios Chasparis, PhD Key Researcher Data Science email: <u>georgios.chasparis@scch.at</u> Tel: +43 50 343 857

SCCH ist eine Initiative der

SCCH befindet sich im

www.scch.at