Inferring local social cost from renewable zoning decisions

Evidence from Lower Austria's wind power zoning

Sebastian Wehrle, Ulrich Morawetz, Peter Regner, Johannes Schmidt

University of Natural Resources and Life Sciences, Vienna Department of Economics and Social Sciences Institute for Sustainable Economic Development

February 16, 2023

Where are wind turbines placed?

Actual locations (Feb 2022)

Locations with best wind resources

Source: Global Wind Atlas 3, own computations

Source: IG Windkraft, BEV

Wind power zoning in Austria

- Spatial planning by federal states prescribes wind power locations
- A collection of locations is enacted as zoning
- By federal law location choice must consider several spatial attributes
- Otherwise, federal states are free in their choice of wind power locations
- However, further attributes evidently important (e.g. wind resources)

Research Question

The social cost of wind power

Which valuation of spatial attributes is consistent with the enacted wind power zoning?

spatial extent

oower system ocal

cost type

Method Sketch

- Understand zoning process as if a social planner maximizes public welfare by location choice
- The observed wind power zoning reveals (social) preferences over spatial attributes
- Estimate a discrete choice logit-model (in willingness-to-pay space)
- Overcome technical difficulties of sample

Social Preferences

- Partition area in pixels indexed ℓ
- *p* equals LCOE of each pixel
- Further attributes of pixels in X
- Unobservable attributes in ε
- $\varepsilon \sim \text{Gumbel}(0, \sigma^2 \pi^2/6)$
- $\omega = -\beta/\alpha$ is the marginal WTP for an attribute change
- $\lambda = -\alpha/\sigma$ scales observable to unobservable part of valuation

Social preferences are represented by

$$w_{\ell} = X_{\ell}\beta + p_{\ell}\alpha + \varepsilon_{\ell}$$
 (1)

as preferences are ordinal, we can normalize (1) for α and σ

$$m{w}_\ell = \lambda \left(m{X}_\ell \omega - m{p}_\ell
ight) + arepsilon_\ell$$
 (2)

which is a discrete choice model in willingness-to-pay space

Estimated local social cost

Table: Iterated estimation with log-linear proximity to residential buildings

Dependent fundble. Mind poner zoning					
important bird areas	4.120	***	d(greenland bldg)	-0.808	***
protected areas	6.209	***	d(greenland zoning)	0.532	***
imp. bird * protected areas	0.492		flight zones	3.308	***
tree cover density (tcd)	7.250	***	d(high level roads)	0.022	
leaf type (lftp)	-10.013	***	d(high voltage grid)	-0.100	***
tcd * lftp	5.894	***	water bodies	-1.548	*
elevation	0.011	***	d(wind turbines 2014)	0.899	***
slope	0.265	***	d(wind turbines 2014) ²	-0.024	***
d(residental bldg)	-192.16	***	overnight stays	0.040	***
ln(d(residential bldg))	2.594	***	complementarity	-27.714	***
d(res'l bldg) * ln(d(res'l bldg)	22.355	***			

Dependent variable: wind power zoning

d() ... distance in km, bldg ... buildings mean log-likelihood: -725.2 mean adj. R^2 : 0.89

Spatial distribution of estimated local social cost

Wind power supply curve

Local social cost in Lower Austria

State of the policy debate

Source: Austrian Energy Agency, 2021

Discussion

- We empirically estimate local social cost incl. disamenity and ecological cost
- Estimates reflect the outcome of a political process
- Estimated willingness-to-pay is robust in preference and WTP space
- Estimates based on LCOE of specific turbine type (Enercon E-101)
- Incomplete representation of the (relevant) electricity network levels

Conlusion

Our results

- can inform optimal capacity choice in power system models
- allow for damage-minimizing wind turbine siting
- can inform consistent policy making

Our approach

• highlights the non-existence of strict 'economic' or 'feasible' potentials

University of Natural Resources and Life Sciences, Vienna

Department of Economics and Social Sciences Institute for Sustainable Economic Development

Sebastian Wehrle

- sebastian.wehrle@boku.ac.at
- 오 @SebWehrle
- SebWehrle

Sebastian Wehrle gratefully acknowledges funding by the Austrian Klimafonds as part of the 13th Austrian Climate Research Programme (ACRP). Grant number KR20AC0K18182

Local social cost components

